IrisGuideNet: Guided Localization and Segmentation Network for Unconstrained Iris Biometrics

计算机科学 生物识别 人工智能 分割 虹膜识别 启发式 预处理器 深度学习 正规化(语言学) 推论 机器学习 管道(软件) IRIS(生物传感器) 模式识别(心理学) 操作系统 程序设计语言
作者
Jawad Muhammad,Caiyong Wang,Yunlong Wang,Kunbo Zhang,Zhenan Sun
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2723-2736 被引量:4
标识
DOI:10.1109/tifs.2023.3268504
摘要

In recent years, unconstraint iris biometric is becoming more prevalent due to its wide range of user applications. But since it allows less user co-operation, it presents numerous challenges to the iris preprocessing task of localisation and segmentation (ILS). To address these challenges, many ILS techniques have been proposed with the deep learning CNN based approaches been the most effective. Training the CNN is data intensive and most of the existing CNN based ILS adopt general purpose CNN without any iris specific guidance. However, the available iris dataset comprises of small subsets with labelled images. As such, the existing CNN models can be less effective as they are trained with these dataset. Hence, in this paper, we propose a guided CNN based ILS technique termed IrisGuideNet by incorporating known iris specific heuristics into the network pipeline. IrisGuideNet has an encoder-decoder structure designed to be invariant to translation and rotation and can capture iris at multiple scales. To address the iris limited data problem, unlike the existing CNN based ILS, during the training process, we adopt the deep supervision technique, employ hybrid losses and introduce a novel iris specific heuristics named Iris Regularization Term (IRT) in other to effectively train the network. At inference, we introduce a novel Iris Infusion Module (IIM) that utilise the geometrical relationships between the ILS outputs to refine the predicted outputs through logical operations. Our models were trained and evaluated with the recently published NIR-ISL Challange * datasets and has proven to be effective as it has outperformed most of the participating models across all the database categories in the competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的南珍完成签到 ,获得积分10
刚刚
2秒前
传奇3应助起风采纳,获得10
2秒前
小蘑菇应助小郭采纳,获得10
2秒前
Joyful发布了新的文献求助10
4秒前
酷波er应助安详的面包采纳,获得10
5秒前
5秒前
英姑应助Naturie采纳,获得10
6秒前
道友请留步完成签到 ,获得积分10
7秒前
8秒前
Akim应助Cy采纳,获得10
9秒前
pluto应助坚强莺采纳,获得10
9秒前
李爱国应助lxz采纳,获得10
11秒前
ShengzhangLiu发布了新的文献求助10
12秒前
12秒前
曾经不言发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
19秒前
Wav发布了新的文献求助10
19秒前
19秒前
起风发布了新的文献求助10
20秒前
20秒前
酷酷的金豆儿完成签到,获得积分20
21秒前
吕凯强完成签到 ,获得积分10
22秒前
lxz发布了新的文献求助10
22秒前
Cy发布了新的文献求助10
23秒前
24秒前
思与省发布了新的文献求助10
24秒前
整齐硬币完成签到,获得积分10
25秒前
xcs完成签到,获得积分10
25秒前
彭于晏应助hutian采纳,获得10
26秒前
26秒前
起风完成签到,获得积分10
26秒前
小闵发布了新的文献求助10
27秒前
昏睡的铭完成签到,获得积分10
27秒前
打打应助某某某采纳,获得10
28秒前
29秒前
30秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378793
求助须知:如何正确求助?哪些是违规求助? 2994275
关于积分的说明 8758688
捐赠科研通 2678828
什么是DOI,文献DOI怎么找? 1467391
科研通“疑难数据库(出版商)”最低求助积分说明 678659
邀请新用户注册赠送积分活动 670268