IrisGuideNet: Guided Localization and Segmentation Network for Unconstrained Iris Biometrics

计算机科学 生物识别 人工智能 分割 虹膜识别 启发式 预处理器 深度学习 正规化(语言学) 推论 机器学习 管道(软件) IRIS(生物传感器) 模式识别(心理学) 操作系统 程序设计语言
作者
Jawad Muhammad,Caiyong Wang,Yunlong Wang,Kunbo Zhang,Zhenan Sun
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 2723-2736 被引量:4
标识
DOI:10.1109/tifs.2023.3268504
摘要

In recent years, unconstraint iris biometric is becoming more prevalent due to its wide range of user applications. But since it allows less user co-operation, it presents numerous challenges to the iris preprocessing task of localisation and segmentation (ILS). To address these challenges, many ILS techniques have been proposed with the deep learning CNN based approaches been the most effective. Training the CNN is data intensive and most of the existing CNN based ILS adopt general purpose CNN without any iris specific guidance. However, the available iris dataset comprises of small subsets with labelled images. As such, the existing CNN models can be less effective as they are trained with these dataset. Hence, in this paper, we propose a guided CNN based ILS technique termed IrisGuideNet by incorporating known iris specific heuristics into the network pipeline. IrisGuideNet has an encoder-decoder structure designed to be invariant to translation and rotation and can capture iris at multiple scales. To address the iris limited data problem, unlike the existing CNN based ILS, during the training process, we adopt the deep supervision technique, employ hybrid losses and introduce a novel iris specific heuristics named Iris Regularization Term (IRT) in other to effectively train the network. At inference, we introduce a novel Iris Infusion Module (IIM) that utilise the geometrical relationships between the ILS outputs to refine the predicted outputs through logical operations. Our models were trained and evaluated with the recently published NIR-ISL Challange * datasets and has proven to be effective as it has outperformed most of the participating models across all the database categories in the competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吕完成签到,获得积分10
刚刚
刚刚
林佳一完成签到,获得积分10
1秒前
某某1发布了新的文献求助30
1秒前
情怀应助QQ采纳,获得10
1秒前
hnj发布了新的文献求助10
1秒前
2秒前
2秒前
akamanuo完成签到,获得积分10
3秒前
逍遥完成签到,获得积分10
4秒前
阿切完成签到,获得积分10
4秒前
踏实无敌应助buno采纳,获得30
4秒前
Hyh_完成签到 ,获得积分10
4秒前
ding应助lshl2000采纳,获得10
4秒前
5秒前
复杂的世德完成签到 ,获得积分10
5秒前
宿帅帅发布了新的文献求助10
5秒前
7秒前
文小杰完成签到,获得积分10
7秒前
Winnie完成签到 ,获得积分10
7秒前
小吕发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
动漫大师发布了新的文献求助10
7秒前
YUAN完成签到,获得积分20
7秒前
ZJU完成签到,获得积分10
8秒前
xiaodian发布了新的文献求助20
9秒前
追寻怜蕾完成签到,获得积分10
9秒前
11秒前
houhuihui发布了新的文献求助10
11秒前
萌酱发布了新的文献求助10
12秒前
12秒前
跳跃的惮发布了新的文献求助10
12秒前
12秒前
12秒前
orixero应助小小旭呀采纳,获得10
13秒前
刘振岁发布了新的文献求助20
13秒前
13秒前
雪123发布了新的文献求助10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754546
求助须知:如何正确求助?哪些是违规求助? 3298093
关于积分的说明 10102689
捐赠科研通 3012698
什么是DOI,文献DOI怎么找? 1654686
邀请新用户注册赠送积分活动 789131
科研通“疑难数据库(出版商)”最低求助积分说明 753159