Optimal pre-dispatch task assignment of volunteers in daily emergency response

任务(项目管理) 启发式 计算机科学 贪婪算法 事件(粒子物理) 质量(理念) 运筹学 考试(生物学) 模拟 人工智能 算法 工程类 古生物学 哲学 物理 系统工程 认识论 量子力学 生物
作者
Niki Matinrad,Tobias Andersson Granberg
出处
期刊:Socio-economic Planning Sciences [Elsevier]
卷期号:87: 101589-101589 被引量:4
标识
DOI:10.1016/j.seps.2023.101589
摘要

In emergency response volunteer programs, volunteers in the vicinity of an emergency are alerted via their mobile phones to the scene of the event to perform a specific task. Tasks are usually assigned based on predetermined rules disregarding real-world uncertainties. In this paper, we consider some of these uncertainties and propose an optimization model for the dispatch of volunteers to emergencies, where all task assignments must be done before dispatch. This means that each volunteer must be given a task before knowing whether (s)he is available. The model becomes computationally demanding for large problem instances; therefore, we develop a simple greedy heuristic for the problem and ensure that it can produce high quality solutions by comparing it to the exact model. While the model is for a general emergency, we test it for the case of volunteers responding to out-of-hospital cardiac arrest (OHCA) incidents. We compare the results of the model to the dispatch strategies used in two ongoing volunteer programs in Sweden and in the Netherlands and use simulation to validate the results. The results show that the model most often outperforms the currently used strategies; however, the computational run times, even for the heuristic, are too high to be operationally useful for large problem instances. Thus, it should be possible to improve the outcome using optimization-based task assignments strategies, but a fast solution method is needed for such strategies to be practically useable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
visible发布了新的文献求助10
1秒前
Shenliheng发布了新的文献求助10
1秒前
1秒前
Mendle发布了新的文献求助10
1秒前
Leonardi应助清秀的砖头采纳,获得200
1秒前
孤檠应助Sheart采纳,获得10
3秒前
淡然完成签到,获得积分10
3秒前
ChEnylnti完成签到,获得积分10
3秒前
3秒前
背后玉米发布了新的文献求助10
5秒前
小白发布了新的文献求助10
5秒前
CHyaa发布了新的文献求助100
5秒前
6秒前
leslie完成签到,获得积分10
6秒前
klay777完成签到,获得积分10
6秒前
7秒前
赘婿应助郝宝真采纳,获得10
7秒前
孤独如曼完成签到,获得积分10
7秒前
Yara.H发布了新的文献求助10
7秒前
amzons9发布了新的文献求助10
8秒前
8秒前
脑洞疼应助ccyy采纳,获得10
8秒前
8秒前
草莓小酒完成签到,获得积分10
8秒前
8秒前
淡然的书本完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
搜集达人应助ohh采纳,获得10
10秒前
bodhi完成签到,获得积分10
10秒前
灵巧筮发布了新的文献求助20
10秒前
10秒前
10秒前
Ice_zhao完成签到,获得积分10
11秒前
Young完成签到,获得积分10
11秒前
12秒前
清秀的砖头给清秀的砖头的求助进行了留言
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587