Integrative multi-omics approach using random forest and artificial neural network models for early diagnosis and immune infiltration characterization in ischemic stroke

随机森林 免疫系统 卷积神经网络 小桶 计算机科学 人工智能 机器学习 计算生物学 基因 医学 基因表达 生物 免疫学 生物化学 转录组
作者
Ling Lin,Changkun Guo,Hanna Jin,Haixiong Huang,Fan Luo,Ying Wang,Dongqi Li,Yuanxin Zhang,Yuqian Xu,Chanyan Zhu,Fengshan Zeng,Huahua He,Jie Chen,Wei Zhang,Wenlin Yu
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fneur.2024.1475582
摘要

Background Ischemic stroke (IS) is a significant global health issue, causing high rates of morbidity, mortality, and disability. Since conventional Diagnosis methods for IS have several shortcomings. It is critical to create new Diagnosis models in order to enhance existing Diagnosis approaches. Methods We utilized gene expression data from the Gene Expression Omnibus (GEO) databases GSE16561 and GSE22255 to identify differentially expressed genes (DEGs) associated with IS. DEGs analysis using the Limma package, as well as GO and KEGG enrichment analyses, were performed. Furthermore, PPI networks were constructed using DEGs from the String database, and Random Forest models were utilized to screen key DEGs. Additionally, an artificial neural network model was developed for IS classification. Use the GSE58294 dataset to evaluate the effectiveness of the scoring model on healthy controls and ischemic stroke samples. The effectiveness of the scoring model was evaluated through AUC analysis, and CIBERSORT analysis was conducted to estimate the immune landscape and explore the correlation between gene expression and immune cell infiltration. Results A total of 26 significant DEGs associated with IS were identified. Metascape analysis revealed enriched biological processes and pathways related to IS. 10 key DEGs (ARG1, DUSP1, F13A1, NFIL3, CCR7, ADM, PTGS2, ID3, FAIM3, HLA-DQB1) were selected using Random Forest and artificial neural network models. The area under the ROC curve (AUC) for the IS classification model was found to be near 1, indicating its high accuracy. Additionally, the analysis of the immune landscape demonstrated elevated immune-related networks in IS patients compared to healthy controls. Conclusion The study uncovers the involvement of specific genes and immune cells in the pathogenesis of IS, suggesting their importance in understanding and potentially targeting the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云阳完成签到,获得积分10
1秒前
寻道图强应助斯文谷秋采纳,获得30
2秒前
坚定之桃完成签到,获得积分10
2秒前
所所应助2765604466采纳,获得10
2秒前
风中的采波应助你好啊采纳,获得10
3秒前
非要叫我起个昵称完成签到,获得积分10
3秒前
研友_LN3BMn发布了新的文献求助10
4秒前
科研小废物完成签到,获得积分10
5秒前
YIX应助丢丢采纳,获得10
6秒前
Liiw完成签到,获得积分10
6秒前
xiaowang完成签到,获得积分10
7秒前
橘柚完成签到,获得积分10
7秒前
胡小壳发布了新的文献求助10
8秒前
Danna完成签到,获得积分10
8秒前
9秒前
橘柚发布了新的文献求助10
12秒前
12秒前
12秒前
窝窝头完成签到,获得积分10
12秒前
酷炫迎波完成签到,获得积分10
13秒前
Hawk完成签到,获得积分10
14秒前
wyg117完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
不知名的呆毛完成签到 ,获得积分20
17秒前
zzz4743应助文艺的平露采纳,获得30
18秒前
Owen应助杰森斯坦虎采纳,获得10
19秒前
19秒前
Shirely发布了新的文献求助10
19秒前
听听完成签到,获得积分10
19秒前
19秒前
19秒前
Danna发布了新的文献求助10
19秒前
zzz4743应助qzj采纳,获得30
21秒前
sjc发布了新的文献求助10
21秒前
听听发布了新的文献求助10
23秒前
25秒前
司耶给司耶的求助进行了留言
25秒前
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236263
求助须知:如何正确求助?哪些是违规求助? 2881992
关于积分的说明 8224575
捐赠科研通 2549972
什么是DOI,文献DOI怎么找? 1378858
科研通“疑难数据库(出版商)”最低求助积分说明 648478
邀请新用户注册赠送积分活动 623979