同质结
光催化
材料科学
范德瓦尔斯力
选择性
化学物理
光化学
纳米技术
化学工程
光电子学
催化作用
化学
分子
异质结
有机化学
工程类
作者
Xianglin Zhu,En‐Long Zhou,Xi–Shi Tai,Huibin Zong,Jianjian Yi,Zhimin Yuan,Xingling Zhao,Peng Huang,Hui Xu,Zaiyong Jiang
标识
DOI:10.1002/anie.202425439
摘要
The effective S‐scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g‐C3N4 were modulated through meticulous polymerization of self‐assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in‐situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces. The homojunction catalyst, composed of g‐C3N4 nanodots and ultra‐thin g‐C3N4 nanoflakes, exhibited a significant S‐scheme carrier separation mechanism, which enhances the utilization of electrons and holes. Consequently, under AM 1.5 light irradiation (~100 mW/cm2), the g‐C3N4 homojunction photocatalyst achieved a remarkable hydrogen evolution rate of 580 μmol h‐1. Furthermore, a reversed CH4 selectivity in CO2 reduction was observed, yielding 80.30 μmol g−1 h−1 with a selectivity of 96.86%, in contrast to the performance of bulk g‐C3N4, which produced only 2.22 μmol g−1 h−1 with the 15.69% CH4 selectivity. These findings not only highlight the significant potential of the g‐C3N4 homojunction photocatalyst for hydrogen production and CO2 reduction but also propose a superior and effective strategy for optimizing the structural properties of g‐C3N4, which are crucial for the design of photocatalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI