Predicting Epidural Hematoma Expansion in Traumatic Brain Injury: A Machine Learning Approach

医学 逻辑回归 创伤性脑损伤 硬膜外血肿 蛛网膜下腔出血 血肿 尤登J统计 随机森林 接收机工作特性 机器学习 放射科 外科 计算机科学 内科学 精神科
作者
Mohammad Hasanpour,Danial Elyassirad,Benyamin Gheiji,Mahsa Vatanparast,Ehsan Keykhosravi,Mehdi Shafiei,Shirin Daneshkhah,Arya Fayyazi,Shahriar Faghani
出处
期刊:Rivista Di Neuroradiologia [SAGE Publishing]
标识
DOI:10.1177/19714009241303052
摘要

Introduction Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, with epidural hematoma (EDH) being a severe consequence. This study focuses on identifying factors predicting EDH volume changes in TBI patients and developing a machine learning (ML) model to predict EDH expansion. Methods The study includes patients with traumatic EDH between 2019 and 2021. Data were gathered from CT scans performed at the time of admission and 6 hours later, and subsequently analyzed. The data was divided into three cohorts: all cases, adults, and pediatrics. To predict EDH volume changes, we used Logistic Regression (LR), Random Forest (RF), XGBoost, and K-Nearest Neighbors (KNN) models. Data was divided into an 80% training set and a 20% test set. Through a rigorous process of parameter optimization and K-fold cross-validation, focusing on the area under the receiving operating curve (AUROC), we identified the best models in all cohorts. The best models were evaluated on the test sets, reporting AUROC, recall, precision, and accuracy using the youden index threshold. Results Results show that age, initial EDH volume, swirl sign, intra-hematoma air bleb, contusion, otorrhagia, subarachnoid hemorrhage, location, and other side extra-axial hematoma have significant effects on changing EDH volume. Based on test AUROC, the best models were RF for adults (82.4%), KNN for pediatrics (90%), and LR for all cases (81.6%). Discussion In this study, we identified key features for predicting EDH expansion as well as developing ML models. Using high sensitive models, can assist clinicians in identifying high-risk patients early. This allows for enhanced monitoring and timely intervention, improving patient outcomes by facilitating quicker decisions for follow-up imaging or treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Eternal完成签到 ,获得积分10
刚刚
wt发布了新的文献求助20
2秒前
rosyw发布了新的文献求助10
2秒前
霸气的小土豆完成签到 ,获得积分10
2秒前
王缪芸发布了新的文献求助10
3秒前
lll完成签到 ,获得积分10
3秒前
蒲琪完成签到,获得积分10
3秒前
ningwu发布了新的文献求助10
4秒前
梁小雨完成签到 ,获得积分10
4秒前
万能图书馆应助DavidShaw采纳,获得10
5秒前
是danoo发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助30
9秒前
活力妙芙完成签到 ,获得积分10
9秒前
serapy完成签到,获得积分10
9秒前
10秒前
大个应助焦恩俊采纳,获得10
11秒前
酷波er应助执着皮皮虾采纳,获得10
11秒前
小叶子发布了新的文献求助10
11秒前
11秒前
大个应助liuliu采纳,获得10
12秒前
12秒前
11完成签到,获得积分10
13秒前
13秒前
14秒前
今夜有雨完成签到 ,获得积分10
15秒前
15秒前
桐桐应助根深者叶茂采纳,获得10
15秒前
ballball233发布了新的文献求助10
16秒前
NexusExplorer应助科研通管家采纳,获得30
16秒前
kingwill发布了新的文献求助30
16秒前
克劳修斯发布了新的文献求助10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得100
17秒前
浮游应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920