Predicting Epidural Hematoma Expansion in Traumatic Brain Injury: A Machine Learning Approach

医学 逻辑回归 创伤性脑损伤 硬膜外血肿 蛛网膜下腔出血 血肿 尤登J统计 随机森林 接收机工作特性 机器学习 放射科 外科 计算机科学 内科学 精神科
作者
Mohammad Hasanpour,Danial Elyassirad,Benyamin Gheiji,Mahsa Vatanparast,Ehsan Keykhosravi,Mehdi Shafiei,Shirin Daneshkhah,Arya Fayyazi,Shahriar Faghani
出处
期刊:Rivista Di Neuroradiologia [SAGE Publishing]
标识
DOI:10.1177/19714009241303052
摘要

Introduction Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, with epidural hematoma (EDH) being a severe consequence. This study focuses on identifying factors predicting EDH volume changes in TBI patients and developing a machine learning (ML) model to predict EDH expansion. Methods The study includes patients with traumatic EDH between 2019 and 2021. Data were gathered from CT scans performed at the time of admission and 6 hours later, and subsequently analyzed. The data was divided into three cohorts: all cases, adults, and pediatrics. To predict EDH volume changes, we used Logistic Regression (LR), Random Forest (RF), XGBoost, and K-Nearest Neighbors (KNN) models. Data was divided into an 80% training set and a 20% test set. Through a rigorous process of parameter optimization and K-fold cross-validation, focusing on the area under the receiving operating curve (AUROC), we identified the best models in all cohorts. The best models were evaluated on the test sets, reporting AUROC, recall, precision, and accuracy using the youden index threshold. Results Results show that age, initial EDH volume, swirl sign, intra-hematoma air bleb, contusion, otorrhagia, subarachnoid hemorrhage, location, and other side extra-axial hematoma have significant effects on changing EDH volume. Based on test AUROC, the best models were RF for adults (82.4%), KNN for pediatrics (90%), and LR for all cases (81.6%). Discussion In this study, we identified key features for predicting EDH expansion as well as developing ML models. Using high sensitive models, can assist clinicians in identifying high-risk patients early. This allows for enhanced monitoring and timely intervention, improving patient outcomes by facilitating quicker decisions for follow-up imaging or treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渊渟岳峙完成签到 ,获得积分10
1秒前
1秒前
孤独的一鸣完成签到,获得积分10
3秒前
开心的大开完成签到 ,获得积分10
3秒前
怎么忘了发布了新的文献求助30
4秒前
妮儿发布了新的文献求助10
4秒前
一叶扁舟完成签到,获得积分10
5秒前
7秒前
lyzhou完成签到,获得积分10
7秒前
8秒前
小超超完成签到 ,获得积分10
10秒前
赘婿应助怎么忘了采纳,获得30
12秒前
打打应助Wendy采纳,获得10
12秒前
芒果柠檬发布了新的文献求助10
12秒前
小北完成签到 ,获得积分10
13秒前
DyG完成签到,获得积分10
14秒前
15秒前
斯文败类应助haha采纳,获得10
17秒前
小Q啊啾发布了新的文献求助10
17秒前
美少女完成签到,获得积分10
18秒前
liuerlong完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
元煜祺发布了新的文献求助10
22秒前
shuxi完成签到,获得积分10
23秒前
大模型应助小乐子采纳,获得10
25秒前
Sandy应助芒果柠檬采纳,获得20
25秒前
李健应助芒果柠檬采纳,获得10
25秒前
pixxo完成签到,获得积分10
26秒前
桐桐应助危机的香萱采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
紧张的似狮完成签到 ,获得积分10
28秒前
悲伤西米露完成签到,获得积分10
28秒前
33秒前
Singularity应助嗯哼采纳,获得10
33秒前
忧郁画板完成签到 ,获得积分10
33秒前
34秒前
阿里院士完成签到,获得积分10
35秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951079
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082339
捐赠科研通 3226915
什么是DOI,文献DOI怎么找? 1784061
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801052