Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions

软机器人 心脏病学 内科学 医学 生物医学工程 计算机科学 机器人 人工智能
作者
Daiki Ueda,Koichi Suzumori,Hiroyuki Nabae,Yuta Ishikawa,Teiji Oda
出处
期刊:Soft robotics [Mary Ann Liebert]
标识
DOI:10.1089/soro.2024.0031
摘要

The myocardial contracting ratio is approximately 20%, whereas ejection fraction exceeds 60%. Understanding the structure and kinetic mechanisms of the heart that enable this high ejection fraction is crucial in both basic and clinical medicine. However, these mechanisms remain incompletely elucidated. The authors have developed a functional model based on the unique myocardial band theory, which posits that the ventricle is formed by a single myocardial band winding into a spiral. According to this theory, a muscle band, which incorporated thin McKibben artificial muscles embedded within a soft elastomer, was formed, and it was subsequently rolled to replicate the ventricle's structure. Thin McKibben muscles are well-suited for mimicking cardiac muscles due to their longitudinal contraction, radial expansion, and ability to operate in a curved position. In general, animal hearts exhibit approximately 20% myocardial contracting ratio, a 1.2-fold change in myocardial band thickness, and an ejection fraction in the range 50-70%. In comparison, soft robotic hearts demonstrated values of 17.3%, a 1.28-fold thickness change, and a 47.8% ejection fraction, respectively, which closely approximated those of real hearts. Water ejection experiments conducted using a soft robotic heart revealed that the maximum pressure during contraction reached 200 mmHg, generating a pressure-volume loop similar to that observed in the human heart. Thus, soft robotic hearts hold the potential for a wide range of clinical applications, including the elucidation of heart failure pathophysiology and the development of surgical treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vioviolviolet完成签到,获得积分10
刚刚
1秒前
科研废材完成签到 ,获得积分10
1秒前
dmy完成签到,获得积分20
1秒前
1秒前
Su_Oct_1完成签到,获得积分20
2秒前
2秒前
汉堡包应助晴空采纳,获得10
3秒前
3秒前
3秒前
ee完成签到,获得积分10
3秒前
ddaa发布了新的文献求助10
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助Lu采纳,获得10
4秒前
5秒前
5秒前
5秒前
yegechuanqi发布了新的文献求助10
5秒前
爆米花应助酷酷学采纳,获得10
5秒前
韩夏菲完成签到,获得积分10
5秒前
orixero应助x5kyi采纳,获得50
5秒前
6秒前
6秒前
xjq发布了新的文献求助10
6秒前
顾矜应助喜悦姿采纳,获得10
7秒前
牛犊发布了新的文献求助10
7秒前
从容航空完成签到,获得积分10
7秒前
万能图书馆应助白方明采纳,获得10
8秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475079
求助须知:如何正确求助?哪些是违规求助? 3067046
关于积分的说明 9102348
捐赠科研通 2758386
什么是DOI,文献DOI怎么找? 1513636
邀请新用户注册赠送积分活动 699739
科研通“疑难数据库(出版商)”最低求助积分说明 699119