Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage

算术编码 编码(社会科学) 算术 计算机科学 可变长度代码 编码(内存) 上下文自适应二进制算术编码 自适应编码 数学 算法 数据压缩 人工智能 统计 无损压缩
作者
Yingxin Hu,Yanjun Liu,Yuefei Yang
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
标识
DOI:10.1089/cmb.2024.0697
摘要

With the rapid advancement of big data and artificial intelligence technologies, the limitations inherent in traditional storage media for accommodating vast amounts of data have become increasingly evident. DNA storage is an innovative approach harnessing DNA and other biomolecules as storage mediums, endowed with superior characteristics including expansive capacity, remarkable density, minimal energy requirements, and unparalleled longevity. Central to the efficient DNA storage is the process of DNA coding, whereby digital information is converted into sequences of DNA bases. A novel encoding method based on adaptive arithmetic coding (AAC) has been introduced, delineating the encoding process into three distinct phases: compression, error correction, and mapping. Prediction by Partial Matching (PPM)-based AAC in the compression phase serves to compress data and enhance storage density. Subsequently, the error correction phase relies on octal Hamming code to rectify errors and safeguard data integrity. The mapping phase employs a "3-2 code" mapping relationship to ensure adherence to biochemical constraints. The proposed method was verified by encoding different formats of files such as text, pictures, and audio. The results indicated that the average coding density of bases can be up to 3.25 per nucleotide, the GC content (which includes guanine [G] and cytosine [C]) can be stabilized at 50% and the homopolymer length is restricted to no more than 2. Simulation experimental results corroborate the method's efficacy in preserving data integrity during both reading and writing operations, augmenting storage density, and exhibiting robust error correction capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
like发布了新的文献求助10
1秒前
yanziwu94完成签到,获得积分10
2秒前
zzy完成签到,获得积分10
3秒前
3秒前
悦耳代真完成签到,获得积分20
3秒前
小彭关注了科研通微信公众号
4秒前
媛媛一定发sci完成签到,获得积分10
4秒前
海4015应助paidahai采纳,获得10
5秒前
6秒前
李爱国应助生动孤丝采纳,获得10
7秒前
7秒前
彭于彦祖应助Hou采纳,获得50
8秒前
pan完成签到,获得积分10
9秒前
斯文败类应助洁面乳采纳,获得50
9秒前
叙温雨发布了新的文献求助10
10秒前
程子完成签到 ,获得积分10
11秒前
呵呵呵悦完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
耗尽完成签到,获得积分10
14秒前
daisyyyyy发布了新的文献求助10
15秒前
Lynn完成签到,获得积分10
15秒前
15秒前
细腻的嫣然完成签到,获得积分20
15秒前
RMQ2025完成签到,获得积分10
16秒前
小蘑菇应助爱尚采纳,获得10
16秒前
勤恳山晴完成签到,获得积分10
16秒前
18秒前
18秒前
18秒前
勤劳汽车发布了新的文献求助10
18秒前
123456完成签到 ,获得积分10
18秒前
咋还发布了新的文献求助10
19秒前
搬砖的化学男应助dandandan采纳,获得10
19秒前
所所应助welch采纳,获得10
20秒前
勤恳山晴发布了新的文献求助80
20秒前
20秒前
21秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119837
求助须知:如何正确求助?哪些是违规求助? 2770280
关于积分的说明 7703883
捐赠科研通 2425650
什么是DOI,文献DOI怎么找? 1288160
科研通“疑难数据库(出版商)”最低求助积分说明 620913
版权声明 599970