Single Cell Inference of Cancer Drug Response Using Pathway‐Based Transformer Network

硼替佐米 伊立替康 计算生物学 药品 多西紫杉醇 紫杉醇 计算机科学 癌症 生物 医学 药理学 内科学 遗传学 结直肠癌 多发性骨髓瘤
作者
Yinghao Yao,Yuandong Xu,Yaru Zhang,Yuanyuan Gui,Qiushun Bai,Zhanzhan Zhu,Hui Peng,Yijun Zhou,Zhen Ji Chen,Jie Sun,Jianzhong Su
出处
期刊:Small methods [Wiley]
标识
DOI:10.1002/smtd.202400991
摘要

Abstract Accurate prediction of cancer drug responses is crucial for personalized therapy. Single‐cell RNA sequencing (scRNA‐seq) captures cellular heterogeneity and rare resistant populations, offering valuable insights into treatment responses. However, the distinct distributions of bulk RNA‐seq and scRNA‐seq data hinder the transfer of drug response knowledge from large‐scale cell line datasets. To address this, single‐cell Pathway Drug Sensitivity (scPDS) model is developed, a Transformer‐based deep learning method that predicts drug sensitivities from scRNA‐seq data through pathway activation transformation. By integrating bulk RNA‐seq data from extensive cell line datasets, scPDS improves accuracy and computational efficiency in scRNA‐seq analysis. It is demonstrated that scPDS outperforms state‐of‐the‐art methods in both time and memory consumption. When applied to breast cancer cells treated with bortezomib, scPDS showed that resistance increases initially but diminishes with prolonged exposure. The method also identifies drug‐sensitive populations in bortezomib‐resistant cells and predicts the efficacy of combination therapies, including docetaxel, gemcitabine, and irinotecan. Furthermore, scPDS successfully distinguishes between sensitive and resistant patients, predicting significantly different survival outcomes. In summary, scPDS offers a robust tool for predicting cellular responses, providing insights to optimize cancer treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风之子发布了新的文献求助10
刚刚
刚刚
刚刚
wangwenzhe发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
lier应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得30
1秒前
shi hui应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
积极问晴应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
swzswz完成签到,获得积分10
3秒前
Frank完成签到,获得积分10
3秒前
JamesPei应助chen采纳,获得10
3秒前
3秒前
哇哈哈完成签到,获得积分10
4秒前
4秒前
Mp4发布了新的文献求助10
4秒前
5秒前
在水一方应助慕哈哈哈采纳,获得10
6秒前
奕奕发布了新的文献求助10
6秒前
7秒前
fa发布了新的文献求助10
7秒前
皮皮皮卡球完成签到,获得积分10
7秒前
8秒前
8秒前
海问天发布了新的文献求助10
8秒前
FashionBoy应助感动归尘采纳,获得10
8秒前
勤奋曼雁发布了新的文献求助10
9秒前
所所应助jasy采纳,获得10
9秒前
9秒前
呼吸之野发布了新的文献求助10
10秒前
大模型应助羽言采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160