Computational Methods for Predicting Chemical Reactivity of Covalent Compounds

反应性(心理学) 共价键 化学 计算机科学 计算化学 有机化学 医学 替代医学 病理
作者
Zhe Zhang,Ruyu Gao,Meiling Zhao,Xiangying Zhang,Haotian Gao,Yifei Qi,Renxiao Wang,Yan Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01591
摘要

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities. Accurately predicting and modulating this reactivity have become a critical focus in the field. In this work, we compiled a data set of 419 cysteine-targeted covalent compounds and their reactivity through an extensive literature review. Employing machine learning, deep learning, and quantum mechanical calculations, we evaluated the intrinsic reactivity of the covalent compounds. Our FP-Stack models demonstrated robust Pearson and Spearman correlations of approximately 0.80 and 0.75 on the test set, respectively. This empowers rapid and accurate reactivity predictions, significantly reducing computational costs and streamlining structural handling and experimental procedures. Experimental validation on acrylamide compounds underscored the predictive efficacy of our model. This study presents an efficient computational tool for the reactivity prediction of covalent compounds and is expected to offer valuable insights for guiding covalent drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助tt采纳,获得10
刚刚
刚刚
fu完成签到,获得积分10
2秒前
3秒前
Marco_hxkq发布了新的文献求助10
3秒前
过时的觅翠完成签到,获得积分10
4秒前
4秒前
WH完成签到,获得积分10
5秒前
6260完成签到,获得积分10
7秒前
8秒前
liu完成签到,获得积分10
8秒前
DavidXu完成签到,获得积分10
10秒前
Vera发布了新的文献求助10
10秒前
充电宝应助rainny采纳,获得10
11秒前
筝zheng完成签到,获得积分10
11秒前
11秒前
1111完成签到,获得积分10
14秒前
情怀应助过时的远侵采纳,获得10
16秒前
17秒前
梁晞完成签到,获得积分20
19秒前
20秒前
20秒前
隐形曼青应助xxyy采纳,获得10
21秒前
21秒前
21秒前
22秒前
英俊的铭应助海阔天空采纳,获得10
24秒前
24秒前
活泼纲完成签到,获得积分20
24秒前
犹豫的夜完成签到,获得积分10
24秒前
852应助晓兴兴采纳,获得10
25秒前
26秒前
wph发布了新的文献求助10
26秒前
龙仔发布了新的文献求助10
26秒前
汉堡包应助现代的曲奇采纳,获得10
26秒前
张起灵完成签到,获得积分10
27秒前
28秒前
SweetyANN发布了新的文献求助10
28秒前
田様应助虞头星星采纳,获得10
28秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089