亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The allosteric regulation mechanism on the catalytic activity of fructosyltransferase studied by molecular dynamics simulations

变构调节 机制(生物学) 分子动力学 催化作用 动力学(音乐) 化学 生物物理学 计算化学 生化工程 生物化学 生物 物理 工程类 量子力学 声学
作者
Chaofan Yu,Yanqi Liu,Liang Fu,Zhengyu Shu,Mojie Duan,Yi Zheng
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
标识
DOI:10.1039/d4cp04131c
摘要

Fructosyltransferase (FTase) is a key glycosidase with hydrolytic and transglycosylation functions that can utilize sucrose to generate oligofructose (FOS), which is extremely important in the food industry as well as in plants and microorganisms. However, there remain significant gaps in our understanding of the catalytic mechanism of FTase, particularly regarding the effect of regulatory mechanisms of residues on enzyme catalytic activity. In this study, molecular dynamics simulations and immobilized enzyme catalysis experiments were employed to investigate the structural dynamics and catalytic activity of QU10-FTase. The effects of structure and activity regulation of QU10-FTase induced by different environments, including the immobilized Fe3O4 interface and solvent temperatures, were investigated. The results show that the catalytic activity of QU10-FTase is suppressed by the immobilized Fe3O4. The all-atom MD simulations revealed that the binding sites of QU10-FTase to the Fe3O4 interface are far away from the catalytic triad, but the structures of the catalytic sites are influenced by the interface binding via an allosteric mechanism. The relationship between the structure and catalytic activity of QU10-FTase under different temperatures further demonstrated the allosteric regulation in the FTase. Our results not only demonstrate the possibility of improving the enzyme activity of QU10-FTase to produce FOS but also provide new insights into the allosteric mechanisms of fructosyltransferase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤劳怜寒完成签到,获得积分10
4秒前
cheng完成签到,获得积分10
6秒前
zhxi完成签到,获得积分20
15秒前
zhxi发布了新的文献求助10
19秒前
NS完成签到,获得积分10
41秒前
科目三应助wang采纳,获得10
43秒前
46秒前
dormraider完成签到,获得积分10
54秒前
56秒前
57秒前
rain发布了新的文献求助10
1分钟前
乐乐应助shanwaishishan采纳,获得10
1分钟前
山竹完成签到,获得积分10
1分钟前
山竹发布了新的文献求助10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
sutharsons应助ceeray23采纳,获得111
1分钟前
1分钟前
自强不息完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
stella发布了新的文献求助10
1分钟前
派大星完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
林非鹿完成签到,获得积分10
1分钟前
2分钟前
2分钟前
科目三应助Augustines采纳,获得10
2分钟前
快乐的慕青完成签到,获得积分10
2分钟前
Gigi完成签到,获得积分10
2分钟前
2分钟前
动人的白凡完成签到 ,获得积分10
2分钟前
2分钟前
章鱼发布了新的文献求助50
2分钟前
kabane完成签到,获得积分10
2分钟前
章鱼完成签到,获得积分10
2分钟前
充电宝应助lalalatiancai采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516334
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240082
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533176
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384