Design of an Ultra-Highly Stable Lithium–Sulfur Battery by Regulating the Redox Activity of Electrocatalyst and the Growth of Lithium Dendrite through Localized Electric Field

分离器(采油) 多硫化物 材料科学 化学工程 氧化还原 催化作用 枝晶(数学) 复合数 涂层 聚丙烯腈 纳米技术 化学 电极 电解质 复合材料 有机化学 物理化学 聚合物 物理 几何学 数学 冶金 生物化学 工程类 热力学
作者
Guowen Sun,Mengjing Jin,Chaoyue Zhang,Dong Chen,Xi Yin Yang,Hong Ruo,Yaxiong Zhang,Zhenxing Zhang,Gengzhi Sun,Xiaojun Pan,Andreu Cabot,Jinyuan Zhou
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c12217
摘要

Polysulfide shuttling and dendrite growth are two primary challenges that significantly limit the practical applications of lithium–sulfur batteries (LSBs). Herein, a three-in-one strategy for a separator based on a localized electrostatic field is demonstrated to simultaneously achieve shuttle inhibition of polysulfides, catalytic activation of the Li–S reaction, and dendrite-free plating of lithium ions. Specifically, an interlayer of polyacrylonitrile nanofiber (PNF) incorporating poled BaTiO3 (PBTO) particles and coating with a layer of MoS2 (PBTO@PNF-MoS2) is developed on the PP separator. Theoretical calculations and experimental work show that the electric field generated at the membrane facilitates the fast and uniform transport of Li+ ions, thereby inhibiting dendrite growth. Additionally, the generated electric field promotes the MoS2 catalytic activity toward the Li–S redox reactions, particularly by reducing the reaction barriers for both the solid–liquid and solid–solid conversions. As a result, symmetrical Li//PBTO@PNF/PP/PBTO@PNF//Li cells demonstrate remarkable stability over 1200 h, and LSBs with a PP/PBTO@PNF-MoS2 composite separator maintain a specific capacity of 318.3 mA h g–1 after 4000 cycles at 2C, with an ultralow capacity decay rate of 0.015%. In addition, the PBTO@PNF membrane also enhances the mechanical flexibility and thermal stability of the composite separator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听导师发布了新的文献求助10
刚刚
刚刚
季忆完成签到,获得积分10
刚刚
小周发布了新的文献求助10
1秒前
smile发布了新的文献求助10
1秒前
2秒前
Lore完成签到 ,获得积分10
2秒前
2秒前
jiang完成签到,获得积分10
3秒前
3秒前
无奈的酒窝关注了科研通微信公众号
4秒前
毛毛完成签到,获得积分10
4秒前
正在完成签到,获得积分10
5秒前
5秒前
充电宝应助JR采纳,获得10
6秒前
6秒前
cc完成签到,获得积分20
6秒前
李爱国应助111采纳,获得10
6秒前
jy发布了新的文献求助10
6秒前
好好完成签到 ,获得积分10
7秒前
阿希塔完成签到,获得积分10
7秒前
JamesPei应助看看采纳,获得10
7秒前
9秒前
9秒前
卢健辉发布了新的文献求助10
9秒前
10秒前
cookie完成签到,获得积分10
10秒前
JMZ完成签到 ,获得积分10
12秒前
英姑应助星星采纳,获得10
12秒前
spurs17发布了新的文献求助30
13秒前
LH完成签到,获得积分10
13秒前
CodeCraft应助Island采纳,获得10
14秒前
annis完成签到,获得积分10
14秒前
小黄应助asir_xw采纳,获得10
15秒前
认真的rain完成签到,获得积分10
15秒前
糊涂的小伙完成签到,获得积分10
16秒前
芒果豆豆完成签到,获得积分10
16秒前
赎罪完成签到 ,获得积分10
17秒前
卢健辉完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808