分离器(采油)
多硫化物
材料科学
化学工程
氧化还原
催化作用
枝晶(数学)
复合数
膜
涂层
聚丙烯腈
纳米技术
化学
电极
电解质
复合材料
有机化学
物理化学
聚合物
物理
几何学
数学
冶金
生物化学
工程类
热力学
作者
Guowen Sun,Mengjing Jin,Chaoyue Zhang,Dong Chen,Xi Yin Yang,Hong Ruo,Yaxiong Zhang,Zhenxing Zhang,Gengzhi Sun,Xiaojun Pan,Andreu Cabot,Jinyuan Zhou
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-12-20
标识
DOI:10.1021/acsnano.4c12217
摘要
Polysulfide shuttling and dendrite growth are two primary challenges that significantly limit the practical applications of lithium–sulfur batteries (LSBs). Herein, a three-in-one strategy for a separator based on a localized electrostatic field is demonstrated to simultaneously achieve shuttle inhibition of polysulfides, catalytic activation of the Li–S reaction, and dendrite-free plating of lithium ions. Specifically, an interlayer of polyacrylonitrile nanofiber (PNF) incorporating poled BaTiO3 (PBTO) particles and coating with a layer of MoS2 (PBTO@PNF-MoS2) is developed on the PP separator. Theoretical calculations and experimental work show that the electric field generated at the membrane facilitates the fast and uniform transport of Li+ ions, thereby inhibiting dendrite growth. Additionally, the generated electric field promotes the MoS2 catalytic activity toward the Li–S redox reactions, particularly by reducing the reaction barriers for both the solid–liquid and solid–solid conversions. As a result, symmetrical Li//PBTO@PNF/PP/PBTO@PNF//Li cells demonstrate remarkable stability over 1200 h, and LSBs with a PP/PBTO@PNF-MoS2 composite separator maintain a specific capacity of 318.3 mA h g–1 after 4000 cycles at 2C, with an ultralow capacity decay rate of 0.015%. In addition, the PBTO@PNF membrane also enhances the mechanical flexibility and thermal stability of the composite separator.
科研通智能强力驱动
Strongly Powered by AbleSci AI