Roles of the Polymer Backbone for Sulfurized Polyacrylonitrile Cathodes in Rechargeable Lithium Batteries

聚丙烯腈 多硫化物 化学 聚合物 轨道能级差 分子 高分子化学 化学工程 电解质 有机化学 物理化学 电极 工程类
作者
Jiqiong Liu,Huichao Lü,Qihang Wang,Xirui Kong,Chenran Hao,Jun Yang,Yanna NuLi,Huanan Duan,Jiulin Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c11216
摘要

Sulfurized polyacrylonitrile (SPAN) has emerged as a highly promising cathode material for next-generation lithium–sulfur (Li–S) batteries primarily due to its non-polysulfide dissolution and excellent cycle stability. Nevertheless, the specific roles and impacts of the pyrolyzed polyacrylonitrile, which constitutes the polymer backbone of SPAN, remain inadequately understood. In this study, comprehensive investigations from multiple aspects, including electrochemistry, spectroscopy, electron microscopy, and theoretical calculations, were conducted on a series of SPAN materials with various sulfur contents. The results reveal that the polymer backbone serves at least four critical functions. First, during the synthesis of SPAN, the polymer backbone provides reactive sites for the incorporation of sulfur through chemical bonding. Second, it establishes an extensive π-conjugated network via a dehydrogenation reaction by sulfur and serves as a conductive framework for SPAN. The chemically bonded sulfur atoms dope the polymer backbone, which narrows the highest occupied molecular orbitals–lowest unoccupied molecular orbitals (HOMO–LUMO) energy gap. Third, the polymer backbone plays an essential role in determining the first Coulombic efficiency, and the irreversibly inserted Li atoms further dope the polymer backbone and reduce the HOMO–LUMO energy gap. Lastly, the pyridine nitrogen within the polymer backbone exhibits an adsorption effect on lithium sulfide (Li2S) species, which stabilizes the cycling performances of the SPAN cathode. It is worth noting that the polymer backbone hardly contributes reversible capacity for the SPAN cathode in carbonate electrolytes within the 1 to 3 V operating voltage range. This study enhances our understanding of SPAN and may provide valuable guidance for the development of better SPAN materials and rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐辉完成签到,获得积分10
1秒前
宇宇宇c完成签到,获得积分10
2秒前
kk完成签到,获得积分10
2秒前
2秒前
3秒前
沉泽发布了新的文献求助30
3秒前
4秒前
徐辉发布了新的文献求助10
5秒前
聪明凌柏完成签到 ,获得积分10
6秒前
夏硕发布了新的文献求助10
7秒前
靓丽念薇完成签到,获得积分10
9秒前
orixero应助鲜艳的傲薇采纳,获得10
10秒前
斯文败类应助pocha_cloud采纳,获得10
11秒前
沉泽完成签到,获得积分10
12秒前
guangyu完成签到,获得积分10
14秒前
Fupup应助莉莉采纳,获得10
14秒前
15秒前
子车茗应助夏硕采纳,获得30
18秒前
18秒前
英俊的铭应助彩色的诗桃采纳,获得10
18秒前
19秒前
剪羊毛发布了新的文献求助10
20秒前
高大代容完成签到 ,获得积分20
22秒前
Miter发布了新的文献求助10
23秒前
jnu发布了新的文献求助10
24秒前
24秒前
25秒前
任白993应助行毅文采纳,获得10
25秒前
脑洞疼应助enen采纳,获得10
26秒前
无私小小完成签到,获得积分10
27秒前
27秒前
Hanxinzhe关注了科研通微信公众号
27秒前
28秒前
赘婿应助老汤姆采纳,获得10
29秒前
WOLF发布了新的文献求助10
30秒前
闪闪落雁完成签到,获得积分10
31秒前
34秒前
Orange应助单身的绮菱采纳,获得10
35秒前
剪羊毛完成签到,获得积分10
37秒前
别急我先送完成签到,获得积分10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3355788
求助须知:如何正确求助?哪些是违规求助? 2979594
关于积分的说明 8690790
捐赠科研通 2661065
什么是DOI,文献DOI怎么找? 1457075
科研通“疑难数据库(出版商)”最低求助积分说明 674646
邀请新用户注册赠送积分活动 665477