Abstract Single‐atom catalysts (SACs) are a class of catalysts with low dosage, low cost, and the presence of metal atom‐carrier interactions with high catalytic activity, which are considered to possess significant potential in the field of electrocatalysis. The most important aspect in the synthesis of SACs is the selection of suitable carriers. Metal carbides, nitrides, or carbon‐nitrides (MXenes) are widely used as a new type of 2D materials with good electrical conductivity and tunable surface properties. The abundance of surface functional groups and vacancy defects on MXenes is an ideal anchoring site for metal single atoms and is therefore regarded as a good carrier for single‐atom loading. In this work, the preparation method of MXenes, the loading mode of SACs, the characterization of the catalysts, and the electrochemical catalytic performance are described in detail, and some of the hot issues of the current research and future research directions are also summarized. The aim of this work is to promote the development of MXene‐based SACs within the realm of electrocatalysis. With ongoing research and innovation, these materials are expected to be crucial in the future of energy conversion and storage solutions.