High‐Throughput Screening of Dual‐Atom Catalysts for Methane Combustion: A Combined Density Functional Theory and Machine‐Learning Study

密度泛函理论 材料科学 对偶(语法数字) 催化作用 吞吐量 甲烷 Atom(片上系统) 燃烧 纳米技术 化学工程 物理化学 计算化学 有机化学 计算机科学 并行计算 艺术 电信 化学 文学类 工程类 无线
作者
Jiaqi Ding,Haonan Gu,Yao Shi,Yi He,Yaqiong Su,Mi Yan,Pengfei Xie
出处
期刊:Advanced Functional Materials [Wiley]
被引量:7
标识
DOI:10.1002/adfm.202414145
摘要

Abstract Ceria‐supported precious metal catalysts have undergone extensive investigation for the catalytic methane combustion. However, it remains a significant challenge to achieve both highly synergistic oxidation activity and efficient atom utilization remains a challenge for commonly used supported nanoparticles and single‐atom catalysts. Dual‐atom catalysts (DACs) emerges as a frontier of advanced catalysts, presenting unique catalytic properties that benefit from the synergy of neighboring metal sites. In this study, 361 ceria‐supported DACs (M 1 M 2 /CeO 2 ) encompassing combinations of 19 transition metals are systematically explored. Using high‐throughput density functional theory calculations, the structures, stability as well as activity of M 1 M 2 /CeO 2 are assessed. Notably, Au 1 Ga 1 /CeO 2 is identified as a promising DAC exhibiting high activity for methane total oxidation, substantiated by comprehensive DFT‐calculated reaction pathways. Furthermore, employing six machine‐learning algorithms, the structure‐properties relationship is explored within ceria‐based DACs and highlight the importance of oxidation states and atomic radii of doped metals as the descriptors. The trained model by computational dataset exhibits high accuracy and predict a more active Mn 1 Au 1 /CeO 2 than those screened using only DFT datasets. The high‐throughput strategy demonstrated in this work not only provides insights into the rational design of methane oxidation catalysts, but also paves the way for exploring DACs for diverse applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助不是吴彦祖喔采纳,获得10
刚刚
1秒前
田様应助听白采纳,获得10
2秒前
小蘑菇应助摆烂蛋挞采纳,获得30
2秒前
在水一方应助一篇大paper采纳,获得10
3秒前
上官若男应助LT采纳,获得10
3秒前
xiaochi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
隐形曼青应助plll采纳,获得10
5秒前
5秒前
holy完成签到,获得积分20
6秒前
FashionBoy应助明月清风采纳,获得10
6秒前
6秒前
7秒前
7秒前
holy发布了新的文献求助10
8秒前
9秒前
两袖清风发布了新的文献求助10
11秒前
11秒前
Qiu发布了新的文献求助10
12秒前
wanci应助holy采纳,获得10
13秒前
Negan完成签到,获得积分10
13秒前
浮游应助xiaochi采纳,获得10
13秒前
幸运鹅完成签到,获得积分10
14秒前
贤惠的谷秋完成签到 ,获得积分10
14秒前
15秒前
龙月发布了新的文献求助30
16秒前
心灵美悟空完成签到,获得积分10
17秒前
17秒前
20秒前
桐桐应助神勇的广缘采纳,获得10
21秒前
修越完成签到 ,获得积分10
21秒前
大个应助Akjan采纳,获得10
21秒前
violin发布了新的文献求助30
21秒前
21秒前
21秒前
21秒前
深情安青应助susan采纳,获得10
22秒前
奶茶一天一杯完成签到,获得积分10
23秒前
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196