已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Optimized Approach for Detection and Classification of Spam Email’s Using Ensemble Methods

计算机科学 集成学习 数据挖掘 机器学习 人工智能
作者
Rubab Fatima,Mian Muhammad Sadiq Fareed,Saleem Ullah,G.F. Ahmad,Saqib Mahmood
出处
期刊:Wireless Personal Communications [Springer Nature]
标识
DOI:10.1007/s11277-024-11628-9
摘要

Abstract Since the advent of email services, spam emails have been a major concern because users’ security depends on the classification of emails as ham or spam. It’s a malware attack that has been used for spear phishing, whaling, clone phishing, website forgery, and other harmful activities. However, various ensemble Machine Learning (ML) algorithms used for the detection and filtering of spam emails have been less explored. In this research, we offer a ML-based optimized algorithm for detecting spam emails that have been enhanced using Hyper-parameter tuning approaches. The proposed approach uses two feature extraction modules, namely Count-Vectorizer and TFIDF-Vectorizer that provide the most effective classification results when we apply them to three different publicly available email data sets: Ling Spam, UCI SMS Spam, and the Proposed dataset. Moreover, to extend the performance of classifiers we used various ML methods such as Naive Bayes (NB), Logistic Regression (LR), Extra Tree, Stochastic Gradient Descent (SGD), XG-Boost, Support Vector Machine (SVM), Random Forest (RF), Multi-layer Perception (MLP), and parameter optimization approaches such as Manual search, Random search, Grid search, and Genetic algorithm. For all three data sets, the SGD outperformed other algorithms. All of the other ensembles (Extra Tree, RF), linear models (LR, Linear-SVC), and MLP performed admirably, with relatively high precision, recall, accuracies, and F1-score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李沐籽发布了新的文献求助10
刚刚
Akim应助沈佳琪采纳,获得10
1秒前
田様应助冷静初蓝采纳,获得10
1秒前
是然宝啊完成签到,获得积分10
1秒前
ABC发布了新的文献求助10
2秒前
4秒前
liberty完成签到,获得积分10
4秒前
汉堡包应助学术智子采纳,获得10
5秒前
8秒前
Singularity应助今昭采纳,获得10
10秒前
wanci应助Z1070741749采纳,获得10
10秒前
11秒前
12秒前
13秒前
13秒前
13秒前
淡然老头完成签到,获得积分10
13秒前
16秒前
细心怜寒发布了新的文献求助10
17秒前
winterm发布了新的文献求助10
18秒前
zzszy发布了新的文献求助10
18秒前
小星星完成签到,获得积分10
19秒前
19秒前
20秒前
缓慢谷雪发布了新的文献求助10
21秒前
曾医生发布了新的文献求助10
22秒前
25秒前
搜集达人应助淡然老头采纳,获得10
25秒前
Singularity应助直率靖荷采纳,获得10
26秒前
ODD发布了新的文献求助10
28秒前
29秒前
打打应助Kannan采纳,获得10
29秒前
29秒前
30秒前
31秒前
冷静初蓝发布了新的文献求助10
35秒前
寒水沉烟发布了新的文献求助10
36秒前
哈哈哈完成签到,获得积分20
36秒前
酷波er应助细心怜寒采纳,获得10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133654
求助须知:如何正确求助?哪些是违规求助? 2784660
关于积分的说明 7768042
捐赠科研通 2439912
什么是DOI,文献DOI怎么找? 1297086
科研通“疑难数据库(出版商)”最低求助积分说明 624856
版权声明 600791