Optimization Study of Multi-Intelligent Economic Management Body System Modules in Adaptive Behavioral Pattern Learning and Simulation

适应性行为 复杂适应系统 计算机科学 人工智能 控制工程 工程类 模拟 系统工程 心理学 社会心理学
作者
Jing Xiao,敏男 四釜,Peng Li,Z. Jerry Wang
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425401469
摘要

As the operational landscape of enterprises grows increasingly complex and volatile, the significance of modularization in economic management has become even more pronounced. By segmenting the management system into distinct yet interdependent modules, enterprises are better equipped to adapt swiftly to market fluctuations, enabling the efficient allocation of resources and the enhancement of management efficacy. Enterprise risk management, a pivotal component of modular management, faces unprecedented challenges, with traditional risk assessment methodologies often failing to meet the stringent demands for precision and real-time responsiveness. To overcome these challenges, this paper proposes a novel GT-DQN framework, integrating Graph Neural Networks (GNNs), transformer, and Deep Q-Network (DQN) algorithms to facilitate risk assessment within enterprise economic management. The framework undertakes comprehensive modeling of enterprise financial data, market transaction records, macroeconomic indicators, and supply chain relationships via GNN, while the transformer captures dynamic shifts in time series data. Ultimately, DQN optimizes risk decision-making strategies within an evolving economic environment, thereby enhancing the accuracy and stability of risk assessments. Experimental results demonstrate that the GT-DQN framework developed in this study achieves a recognition accuracy of 90% on public datasets across three tiers of enterprise risk — high, medium, and low — providing a robust technical foundation for future risk prediction and analysis in the modular management of enterprise economies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斐然诗完成签到,获得积分10
1秒前
3秒前
无花果应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
chdin发布了新的文献求助10
4秒前
爱静静应助科研通管家采纳,获得10
4秒前
6秒前
6秒前
6秒前
清枫完成签到,获得积分10
7秒前
7秒前
明理丹烟发布了新的文献求助10
9秒前
11秒前
晓豪发布了新的文献求助10
11秒前
典雅碧空发布了新的文献求助10
11秒前
jiaojiao发布了新的文献求助10
11秒前
葭月十七发布了新的文献求助10
12秒前
李昕123发布了新的文献求助10
12秒前
文艺醉波完成签到,获得积分10
13秒前
14秒前
丘比特应助典雅碧空采纳,获得10
14秒前
15秒前
简单发布了新的文献求助10
16秒前
张瑞雪完成签到 ,获得积分10
16秒前
夏侯丹烟发布了新的文献求助10
17秒前
魔幻的衫完成签到,获得积分10
18秒前
隐形曼青应助晓豪采纳,获得10
18秒前
gggg发布了新的文献求助10
20秒前
22秒前
花花123发布了新的文献求助10
26秒前
30秒前
32秒前
呆萌的土豆完成签到,获得积分10
33秒前
大模型应助yoyo采纳,获得10
34秒前
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384006
求助须知:如何正确求助?哪些是违规求助? 2998016
关于积分的说明 8777444
捐赠科研通 2683604
什么是DOI,文献DOI怎么找? 1469829
科研通“疑难数据库(出版商)”最低求助积分说明 679553
邀请新用户注册赠送积分活动 671837