Machine Learning: A Multicentre Study on Predicting Lateral Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma

医学 淋巴结转移 甲状腺癌 转移 肿瘤科 放射科 内科学 甲状腺 癌症
作者
Jing Zhou,Daxue Li,Jiahui Ren,Chun Huang,Shiying Yang,Chen Mingyao,Zhongxiao Wan,Jinhang He,Yuchen Zhuang,Xue Song,Lin Chun,Xinliang Su
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [Oxford University Press]
标识
DOI:10.1210/clinem/dgaf070
摘要

The necessity of prophylactic lateral neck dissection for cN0 papillary thyroid carcinoma (PTC) remains debated. This study aimed to compare traditional nomograms with machine learning (ML) models for predicting ipsilateral lateral and level II, III, and IV lymph node metastasis (LNM). Data from 1616 PTC patients diagnosed via fine needle aspiration biopsy from Hospital A were split into training and testing sets (7:3). 243 patients from Hospital B served as validation set. Four dependent variables-ipsilateral lateral, level II, III, and IV LNM-were analyzed. Eight ML models (Logistic Regression, Decision Tree, Random Forest-RF, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Gaussian Naive Bayes, Neural Networks) were developed and validated using 10-fold cross-validation and grid search hyperparameter tuning. Models were assessed using 11 metrics including accuracy, area under the curve (AUC), specificity, and sensitivity. The best was compared with nomograms using the Probability-based Ranking Model Approach (PMRA). RF outperformed other approaches achieving accuracy, AUC, specificity, and sensitivity of 0.773/0.728, 0.858/0.799, 0.984/0.935, 0.757/0.807 in the testing/validation sets respectively for ipsilateral LLNM. A streamlined model based on the top ten contributing features that includes ipsilateral central lymph node metastasis rate, extrathyroidal extension, and ipsilateral central lymph node metastasis number retained strong performance and clearly surpassed a traditional nomogram approach based on multiple metrics and PMRA analysis. Similar results were obtained for the other dependent variables, with the RF models relying on distinct but overlapping sets of features. Clinical tool implementation is facilitated via a web-based calculator for each of the four dependent variables. ML, especially RF, reliably predicts lateral LNM in cN0 PTC patients, outperforming traditional nomograms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yt完成签到 ,获得积分10
刚刚
方圆学术完成签到,获得积分10
1秒前
Beyond095完成签到,获得积分10
1秒前
1秒前
1秒前
时光友岸完成签到,获得积分10
1秒前
GY12发布了新的文献求助10
2秒前
小柯发布了新的文献求助10
2秒前
2秒前
阔达以山完成签到,获得积分10
2秒前
zzzz完成签到,获得积分10
2秒前
所所应助范德萨范德萨采纳,获得10
3秒前
qzy完成签到,获得积分10
3秒前
3秒前
couseware发布了新的文献求助10
4秒前
ao完成签到,获得积分10
4秒前
Doctor_Mill完成签到,获得积分10
4秒前
4秒前
yulian完成签到,获得积分10
4秒前
完美的书雁完成签到 ,获得积分10
4秒前
关关过完成签到,获得积分0
5秒前
5秒前
111222333发布了新的文献求助10
5秒前
7秒前
里里完成签到,获得积分10
7秒前
lin发布了新的文献求助10
7秒前
马焕完成签到,获得积分20
8秒前
8秒前
萌萌完成签到,获得积分10
8秒前
绾宸发布了新的文献求助10
8秒前
云舒发布了新的文献求助10
9秒前
连衣裙发布了新的文献求助10
9秒前
有夜空的地方必然有星河完成签到 ,获得积分10
9秒前
Waaly完成签到,获得积分10
9秒前
wsq完成签到,获得积分10
10秒前
细心的日记本完成签到,获得积分10
10秒前
学术z完成签到,获得积分10
11秒前
aa完成签到 ,获得积分10
12秒前
12秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763815
求助须知:如何正确求助?哪些是违规求助? 3308392
关于积分的说明 10144319
捐赠科研通 3023510
什么是DOI,文献DOI怎么找? 1659581
邀请新用户注册赠送积分活动 792779
科研通“疑难数据库(出版商)”最低求助积分说明 755217