亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning: A Multicentre Study on Predicting Lateral Lymph Node Metastasis in cN0 Papillary Thyroid Carcinoma

医学 淋巴结转移 甲状腺癌 转移 肿瘤科 放射科 内科学 甲状腺 癌症
作者
Jing Zhou,Daxue Li,Jiahui Ren,Chun Huang,Shiying Yang,Chen Mingyao,Zhongxiao Wan,Jinhang He,Yuchen Zhuang,Xue Song,Lin Chun,Xinliang Su
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
标识
DOI:10.1210/clinem/dgaf070
摘要

The necessity of prophylactic lateral neck dissection for cN0 papillary thyroid carcinoma (PTC) remains debated. This study aimed to compare traditional nomograms with machine learning (ML) models for predicting ipsilateral lateral and level II, III, and IV lymph node metastasis (LNM). Data from 1616 PTC patients diagnosed via fine needle aspiration biopsy from Hospital A were split into training and testing sets (7:3). 243 patients from Hospital B served as validation set. Four dependent variables-ipsilateral lateral, level II, III, and IV LNM-were analyzed. Eight ML models (Logistic Regression, Decision Tree, Random Forest-RF, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Gaussian Naive Bayes, Neural Networks) were developed and validated using 10-fold cross-validation and grid search hyperparameter tuning. Models were assessed using 11 metrics including accuracy, area under the curve (AUC), specificity, and sensitivity. The best was compared with nomograms using the Probability-based Ranking Model Approach (PMRA). RF outperformed other approaches achieving accuracy, AUC, specificity, and sensitivity of 0.773/0.728, 0.858/0.799, 0.984/0.935, 0.757/0.807 in the testing/validation sets respectively for ipsilateral LLNM. A streamlined model based on the top ten contributing features that includes ipsilateral central lymph node metastasis rate, extrathyroidal extension, and ipsilateral central lymph node metastasis number retained strong performance and clearly surpassed a traditional nomogram approach based on multiple metrics and PMRA analysis. Similar results were obtained for the other dependent variables, with the RF models relying on distinct but overlapping sets of features. Clinical tool implementation is facilitated via a web-based calculator for each of the four dependent variables. ML, especially RF, reliably predicts lateral LNM in cN0 PTC patients, outperforming traditional nomograms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄之又玄完成签到,获得积分10
3秒前
7秒前
20秒前
jennie完成签到 ,获得积分10
56秒前
王饱饱完成签到 ,获得积分10
1分钟前
2分钟前
jyy发布了新的文献求助20
2分钟前
SciGPT应助科研通管家采纳,获得30
2分钟前
萝卜丁完成签到 ,获得积分0
2分钟前
丘比特应助jyy采纳,获得10
3分钟前
3分钟前
支思枫完成签到,获得积分10
3分钟前
颜林林发布了新的文献求助10
3分钟前
科研通AI2S应助111采纳,获得10
3分钟前
深情安青应助追寻青柏采纳,获得10
4分钟前
追寻青柏完成签到,获得积分10
5分钟前
小二郎应助晓峰采纳,获得30
5分钟前
NexusExplorer应助VDC采纳,获得10
5分钟前
咯咯咯完成签到 ,获得积分10
5分钟前
5分钟前
晓峰发布了新的文献求助30
5分钟前
5分钟前
VDC发布了新的文献求助10
5分钟前
加菲丰丰应助VDC采纳,获得30
5分钟前
Metrix应助swagfare采纳,获得10
5分钟前
Gaopkid完成签到,获得积分10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
Gaopkid发布了新的文献求助10
6分钟前
marceloclaro完成签到,获得积分10
6分钟前
糟糕的铁锤应助marceloclaro采纳,获得100
7分钟前
金钰贝儿完成签到,获得积分10
7分钟前
1437594843完成签到 ,获得积分10
7分钟前
毓雅完成签到,获得积分10
7分钟前
8分钟前
满意的伊发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
9分钟前
小麻哥完成签到,获得积分10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516380
求助须知:如何正确求助?哪些是违规求助? 3098637
关于积分的说明 9240207
捐赠科研通 2793747
什么是DOI,文献DOI怎么找? 1533239
邀请新用户注册赠送积分活动 712622
科研通“疑难数据库(出版商)”最低求助积分说明 707387