亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
FIN发布了新的文献求助50
35秒前
我是老大应助散装洋芋采纳,获得10
37秒前
在水一方应助lj采纳,获得10
41秒前
54秒前
lj发布了新的文献求助10
1分钟前
1分钟前
木昆完成签到 ,获得积分10
1分钟前
FIN发布了新的文献求助50
1分钟前
1分钟前
韩韩完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助hail采纳,获得10
1分钟前
2分钟前
hail发布了新的文献求助10
2分钟前
2分钟前
散装洋芋发布了新的文献求助10
2分钟前
Hillson完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
nefu biology完成签到,获得积分10
2分钟前
nefu biology发布了新的文献求助10
2分钟前
3分钟前
梦将军应助FIN采纳,获得50
3分钟前
3分钟前
爱笑半莲发布了新的文献求助10
3分钟前
Christina完成签到,获得积分20
3分钟前
爱笑半莲完成签到,获得积分10
3分钟前
3分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Lucas应助Christina采纳,获得30
3分钟前
wmz完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554861
求助须知:如何正确求助?哪些是违规求助? 4639412
关于积分的说明 14656222
捐赠科研通 4581365
什么是DOI,文献DOI怎么找? 2512722
邀请新用户注册赠送积分活动 1487466
关于科研通互助平台的介绍 1458410