Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巨无霸发布了新的文献求助10
刚刚
大个应助黄yellow采纳,获得10
刚刚
严yee完成签到,获得积分10
刚刚
梦若浮生完成签到,获得积分10
刚刚
tony发布了新的文献求助10
刚刚
1秒前
1秒前
soledy发布了新的文献求助10
1秒前
2秒前
2秒前
岑晓冰完成签到 ,获得积分10
3秒前
理想国的过客完成签到,获得积分10
3秒前
3秒前
阳光热狗发布了新的文献求助20
3秒前
妮露的修狗完成签到,获得积分10
3秒前
4秒前
一个西瓜切两半完成签到,获得积分10
4秒前
木桶人plus发布了新的文献求助10
5秒前
5秒前
jgyyugyfy发布了新的文献求助10
5秒前
5秒前
伊力扎提发布了新的文献求助10
6秒前
LZS发布了新的文献求助10
6秒前
7秒前
7秒前
柚子发布了新的文献求助10
7秒前
科研通AI6.1应助凤彩采纳,获得10
8秒前
10秒前
hhhhhy发布了新的文献求助30
10秒前
10秒前
10秒前
qizhang完成签到,获得积分10
11秒前
11秒前
友好白凡完成签到,获得积分10
12秒前
个性妙芙完成签到,获得积分10
12秒前
汉堡包应助双丁宝贝采纳,获得10
13秒前
13秒前
jwx完成签到,获得积分0
13秒前
初一发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734192
求助须知:如何正确求助?哪些是违规求助? 5352723
关于积分的说明 15326264
捐赠科研通 4878992
什么是DOI,文献DOI怎么找? 2621558
邀请新用户注册赠送积分活动 1570684
关于科研通互助平台的介绍 1527613