Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就的菀完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助20
1秒前
活泼小笼包完成签到,获得积分10
2秒前
机智的乌完成签到,获得积分10
2秒前
Lukomere发布了新的文献求助10
2秒前
2秒前
tt完成签到 ,获得积分10
3秒前
酷波er应助Dallas采纳,获得10
3秒前
3秒前
狐尔莫发布了新的文献求助10
4秒前
shepherd完成签到,获得积分10
4秒前
momo发布了新的文献求助10
4秒前
突突突完成签到,获得积分10
4秒前
5秒前
Akun发布了新的文献求助10
5秒前
李爱国应助整齐的雁丝采纳,获得10
6秒前
6秒前
7秒前
留胡子的海豚完成签到,获得积分10
7秒前
娜行完成签到 ,获得积分10
7秒前
7秒前
zxs666完成签到,获得积分10
8秒前
Luna完成签到 ,获得积分10
8秒前
728完成签到,获得积分10
8秒前
Kleen发布了新的文献求助10
8秒前
8秒前
谨慎妙菡完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得100
9秒前
9秒前
9秒前
9秒前
呆萌的觅松完成签到,获得积分10
9秒前
小铭同学完成签到,获得积分10
9秒前
sure完成签到,获得积分10
9秒前
研友_V8R99Z完成签到,获得积分10
9秒前
潇洒的冰淇淋完成签到,获得积分10
9秒前
Lucas应助Winter采纳,获得10
9秒前
Linz完成签到,获得积分10
9秒前
名副棋实完成签到,获得积分10
10秒前
123胡完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997