Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
被引量:7
标识
DOI:10.1002/adhm.202404685
摘要

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease-specific biomarkers such as amyloid-beta (Aβ), tau protein, and alpha-synuclein (α-Syn). The integration of these materials into advanced biosensors for real-time detection holds the promise of revolutionizing neurodiagnostic, enabling non-invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
垃圾完成签到 ,获得积分10
刚刚
你好夏天完成签到 ,获得积分10
1秒前
12345完成签到,获得积分10
7秒前
nn完成签到,获得积分10
7秒前
二二二完成签到 ,获得积分10
9秒前
Lucas应助民族风采纳,获得10
12秒前
14秒前
15秒前
16秒前
dd完成签到,获得积分10
16秒前
6692067发布了新的文献求助10
17秒前
18秒前
刘金磊完成签到,获得积分10
18秒前
Ava应助zht采纳,获得10
20秒前
柠溪完成签到 ,获得积分10
20秒前
可爱的函函应助struggle采纳,获得10
20秒前
absb发布了新的文献求助50
21秒前
dd发布了新的文献求助10
21秒前
jun2008x完成签到 ,获得积分10
21秒前
犹豫的幻灵完成签到,获得积分10
22秒前
22秒前
23秒前
kai完成签到,获得积分10
25秒前
研究生end发布了新的文献求助20
25秒前
辛谷方松永旭完成签到,获得积分10
26秒前
CHANL发布了新的文献求助10
26秒前
林西雨完成签到,获得积分10
27秒前
27秒前
28秒前
absb完成签到,获得积分10
29秒前
SciGPT应助顺弟er采纳,获得10
29秒前
struggle完成签到,获得积分10
30秒前
沐浴璐发布了新的文献求助10
30秒前
耳东完成签到 ,获得积分10
30秒前
先知完成签到,获得积分10
31秒前
31秒前
科研通AI6应助皮卡丘比特采纳,获得10
32秒前
李健应助absb采纳,获得10
32秒前
33秒前
struggle发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429