Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
刚刚
搜集达人应助Alice采纳,获得10
刚刚
Shin完成签到,获得积分10
刚刚
1秒前
Giraffe发布了新的文献求助10
2秒前
球求大佬完成签到 ,获得积分20
2秒前
3秒前
5秒前
131完成签到,获得积分10
5秒前
田様应助包容海雪采纳,获得10
5秒前
眼睛大的冰岚完成签到,获得积分10
5秒前
Akim应助灰色铅笔采纳,获得10
5秒前
工艺员完成签到,获得积分10
5秒前
酷波er应助lmr采纳,获得10
6秒前
清秀的白玉完成签到,获得积分20
6秒前
李爱国应助寒江孤影采纳,获得10
6秒前
7秒前
7秒前
7秒前
8秒前
orixero应助张张张采纳,获得10
8秒前
8秒前
9秒前
退堂鼓艺术家完成签到,获得积分10
9秒前
aaaaaa发布了新的文献求助10
10秒前
科研通AI6.1应助liuying采纳,获得10
10秒前
李健应助Donger采纳,获得30
10秒前
bluesiryao发布了新的文献求助10
10秒前
毛大雪完成签到 ,获得积分20
10秒前
wkkky发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
付宇飞发布了新的文献求助10
12秒前
ZSS发布了新的文献求助10
12秒前
12秒前
Shin关注了科研通微信公众号
12秒前
魅雪霓完成签到,获得积分10
13秒前
xiaoming完成签到 ,获得积分10
13秒前
llll发布了新的文献求助10
15秒前
15秒前
aaaaaa完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785091
求助须知:如何正确求助?哪些是违规求助? 5685673
关于积分的说明 15466575
捐赠科研通 4914208
什么是DOI,文献DOI怎么找? 2645113
邀请新用户注册赠送积分活动 1592892
关于科研通互助平台的介绍 1547293