Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
雨雨应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
刚刚
微糖应助科研通管家采纳,获得10
刚刚
刚刚
雨雨应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
刚刚
刚刚
核桃应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
小二郎应助科研通管家采纳,获得30
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
英姑应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
微糖应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
微糖应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
mengtingmei应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助huibzh采纳,获得10
1秒前
mengtingmei应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071