Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
被引量:2
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YinLi发布了新的文献求助10
3秒前
orixero应助张123采纳,获得10
5秒前
科研通AI5应助呆萌的书包采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
dajiejie发布了新的文献求助10
6秒前
666驳回了ding应助
13秒前
zzl完成签到 ,获得积分10
14秒前
sdzylx7发布了新的文献求助10
16秒前
深水中的阳光完成签到,获得积分10
16秒前
16秒前
科研通AI6应助dajiejie采纳,获得10
17秒前
细胞核发布了新的文献求助10
17秒前
MYC007完成签到 ,获得积分10
18秒前
5114完成签到,获得积分10
19秒前
红宝石设计局完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
张123发布了新的文献求助10
27秒前
keyanyan给keyanyan的求助进行了留言
27秒前
He完成签到,获得积分10
28秒前
桐桐应助HUI采纳,获得10
29秒前
30秒前
31秒前
Xiongpd发布了新的文献求助10
31秒前
32秒前
岁月静好完成签到,获得积分10
33秒前
34秒前
35秒前
flysky120发布了新的文献求助10
35秒前
小蘑菇应助顺心的成协采纳,获得10
37秒前
王佐完成签到,获得积分10
37秒前
37秒前
5114发布了新的文献求助20
37秒前
量子星尘发布了新的文献求助10
38秒前
外向葶发布了新的文献求助10
39秒前
NexusExplorer应助蒜香炒田鸡采纳,获得10
41秒前
43秒前
荔枝多酚完成签到,获得积分10
44秒前
46秒前
共享精神应助点点点采纳,获得10
47秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4208741
求助须知:如何正确求助?哪些是违规求助? 3742913
关于积分的说明 11781822
捐赠科研通 3412747
什么是DOI,文献DOI怎么找? 1872810
邀请新用户注册赠送积分活动 927420
科研通“疑难数据库(出版商)”最低求助积分说明 837073