Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
agnes发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
gro_ele发布了新的文献求助10
1秒前
1秒前
完美的铸海完成签到,获得积分10
1秒前
1秒前
天天快乐应助kobespecial采纳,获得30
2秒前
2秒前
麋鹿完成签到,获得积分10
2秒前
李健的小迷弟应助cola采纳,获得30
2秒前
林狗发布了新的文献求助10
2秒前
3秒前
秋的账号发布了新的文献求助10
3秒前
3秒前
酷酷依秋发布了新的文献求助10
4秒前
beibei111发布了新的文献求助10
4秒前
JamesPei应助曾叫兽采纳,获得10
4秒前
5秒前
5秒前
巫雍发布了新的文献求助10
5秒前
可爱的函函应助infognet采纳,获得10
6秒前
Jazzen完成签到,获得积分10
6秒前
assure发布了新的文献求助10
6秒前
今后应助榴莲小胖采纳,获得10
6秒前
gro_ele完成签到,获得积分10
6秒前
专注之双发布了新的文献求助100
6秒前
师师发布了新的文献求助10
6秒前
927完成签到,获得积分20
6秒前
星辰大海应助ZC采纳,获得10
7秒前
7秒前
jnb发布了新的文献求助10
8秒前
whw发布了新的文献求助10
8秒前
WTX完成签到,获得积分10
8秒前
传奇3应助weixi4457采纳,获得10
9秒前
深情安青应助yqsf789采纳,获得10
9秒前
9秒前
hjq完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182