Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
被引量:2
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠易发布了新的文献求助10
1秒前
Owen应助Coral.采纳,获得10
2秒前
2秒前
ccq发布了新的文献求助10
2秒前
Alex爱大家发布了新的文献求助10
3秒前
发文章鸭发布了新的文献求助10
3秒前
5秒前
康康完成签到,获得积分10
6秒前
7秒前
7秒前
阿波罗完成签到,获得积分10
8秒前
8秒前
zhiyao2025完成签到,获得积分10
9秒前
10秒前
康康发布了新的文献求助10
10秒前
12秒前
果果发布了新的文献求助10
13秒前
SciGPT应助hyr采纳,获得10
14秒前
wangyu发布了新的文献求助10
14秒前
15秒前
18秒前
20秒前
科研小石完成签到,获得积分10
20秒前
21秒前
Lx完成签到,获得积分10
21秒前
无奈的冷之完成签到,获得积分20
21秒前
21秒前
桐桐应助akjsi采纳,获得10
22秒前
顾矜应助科研小石采纳,获得30
24秒前
Lx发布了新的文献求助10
24秒前
24秒前
迷路的晓旋完成签到,获得积分10
24秒前
勤劳涵山发布了新的文献求助30
24秒前
难过千易发布了新的文献求助10
25秒前
Aurora.H发布了新的文献求助10
25秒前
水沐菁华完成签到,获得积分10
25秒前
26秒前
26秒前
研友_QLXYgn发布了新的文献求助10
26秒前
不安海蓝完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516