亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
被引量:7
标识
DOI:10.1002/adhm.202404685
摘要

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease-specific biomarkers such as amyloid-beta (Aβ), tau protein, and alpha-synuclein (α-Syn). The integration of these materials into advanced biosensors for real-time detection holds the promise of revolutionizing neurodiagnostic, enabling non-invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑暗炸鸡发布了新的文献求助10
4秒前
mwm完成签到 ,获得积分10
15秒前
深情安青应助黑暗炸鸡采纳,获得10
18秒前
27秒前
大胆的碧菡完成签到,获得积分10
27秒前
Criminology34应助科研通管家采纳,获得10
29秒前
Criminology34应助科研通管家采纳,获得30
29秒前
Akim应助科研通管家采纳,获得10
29秒前
35秒前
42秒前
桐桐应助酷炫的面包采纳,获得10
45秒前
kukudou2发布了新的文献求助10
46秒前
kukudou2完成签到,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王绪威发布了新的文献求助10
1分钟前
科研通AI5应助王绪威采纳,获得10
1分钟前
chenlc971125完成签到 ,获得积分10
1分钟前
treat4869完成签到 ,获得积分10
2分钟前
共享精神应助贺喆采纳,获得10
2分钟前
快乐的笑阳完成签到,获得积分10
2分钟前
开心成威完成签到 ,获得积分10
2分钟前
润泽完成签到,获得积分10
3分钟前
戈屿完成签到 ,获得积分10
3分钟前
3分钟前
灵巧嚓茶发布了新的文献求助10
3分钟前
3分钟前
Thanks完成签到 ,获得积分10
3分钟前
Orange应助小冯看不懂采纳,获得10
3分钟前
Nuyoah完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
轻语完成签到 ,获得积分10
3分钟前
冰西瓜完成签到 ,获得积分0
3分钟前
3分钟前
噫吁嚱完成签到 ,获得积分10
4分钟前
Augustines完成签到,获得积分10
4分钟前
4分钟前
lvsehx发布了新的文献求助10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126912
求助须知:如何正确求助?哪些是违规求助? 4330184
关于积分的说明 13492980
捐赠科研通 4165597
什么是DOI,文献DOI怎么找? 2283452
邀请新用户注册赠送积分活动 1284485
关于科研通互助平台的介绍 1224316