Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Hyc28441711采纳,获得10
刚刚
刚刚
呆呆呆完成签到,获得积分10
1秒前
luyu完成签到,获得积分10
1秒前
晨雨完成签到,获得积分10
1秒前
jessie驳回了杳鸢应助
1秒前
1秒前
Lucas应助南瓜采纳,获得10
1秒前
1秒前
丰知然应助科研通管家采纳,获得10
2秒前
付一鸣发布了新的文献求助10
2秒前
圆圈儿应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
赘婿应助yanjiawen采纳,获得10
2秒前
mhl11应助科研通管家采纳,获得10
3秒前
顾志成完成签到,获得积分10
3秒前
ming应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
sherry发布了新的文献求助10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
3秒前
英姑应助科研通管家采纳,获得10
4秒前
a雪橙完成签到 ,获得积分10
4秒前
JamesPei应助ZZDXXX采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
50257055发布了新的文献求助10
4秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
欢呼的凡梦完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助shensir采纳,获得10
5秒前
科研小呆瓜应助freshman3005采纳,获得30
5秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311526
求助须知:如何正确求助?哪些是违规求助? 2944297
关于积分的说明 8518278
捐赠科研通 2619707
什么是DOI,文献DOI怎么找? 1432509
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649903