Porous Materials for Early Diagnosis of Neurodegenerative Diseases

材料科学 纳米技术 医学
作者
Payam Arghavani,Hossein Daneshgar,Soheil Sojdeh,Mohammad Edrisi,Ali Akbar Moosavi‐Movahedi,Navid Rabiee
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:14 (26): e2404685-e2404685 被引量:8
标识
DOI:10.1002/adhm.202404685
摘要

Abstract Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease‐specific biomarkers such as amyloid‐beta (Aβ), tau protein, and alpha‐synuclein (α‐Syn). The integration of these materials into advanced biosensors for real‐time detection holds the promise of revolutionizing neurodiagnostic, enabling non‐invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨天不打伞完成签到 ,获得积分10
1秒前
晚风cc关注了科研通微信公众号
1秒前
机智的顺溜完成签到,获得积分10
1秒前
SHENJING发布了新的文献求助10
1秒前
Owen应助小巧的诗双采纳,获得10
1秒前
2秒前
2秒前
赵世璧完成签到,获得积分10
2秒前
jdndbd发布了新的文献求助10
2秒前
sss完成签到,获得积分10
2秒前
大模型应助魔幻灵煌采纳,获得10
2秒前
虚心的砖家完成签到,获得积分10
3秒前
3秒前
所所应助heehee采纳,获得10
3秒前
田様应助shadow采纳,获得10
4秒前
4秒前
5秒前
迷路雨寒应助欠虐宝宝采纳,获得10
5秒前
5秒前
6秒前
冬去春来发布了新的文献求助10
6秒前
6秒前
ELEGENCE完成签到,获得积分10
6秒前
路过看看完成签到,获得积分10
6秒前
霸气剑通发布了新的文献求助10
7秒前
lll发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
arT发布了新的文献求助10
8秒前
zhangyanan24发布了新的文献求助10
8秒前
乐乐应助常艳艳采纳,获得10
8秒前
siver完成签到 ,获得积分10
8秒前
淡定完成签到,获得积分10
8秒前
9秒前
敏敏9813完成签到,获得积分10
9秒前
9秒前
LiuZhe发布了新的文献求助10
10秒前
甄遥完成签到,获得积分10
10秒前
谢同学发布了新的文献求助10
10秒前
搜集达人应助等待黎明采纳,获得10
11秒前
周易完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425