Ti3C2Tx Nanosheet/NiFe2O4 Nanoparticle Composites for Electrocatalytic Water Splitting

纳米片 材料科学 纳米颗粒 分解水 复合材料 纳米技术 催化作用 化学 生物化学 光催化
作者
Ritu Raj,Sanjeet Kumar Paswan,Lawrence Kumar,Gajendra Prasad Singh,Krishna Kanta Haldar
出处
期刊:ACS applied nano materials [American Chemical Society]
标识
DOI:10.1021/acsanm.4c06758
摘要

This study reports the synthesis and detailed characterization of a Ti3C2Tx sheets/NiFe2O4 ferrite nanocomposite designed to enhance bifunctional electrocatalytic water splitting. Utilizing a facile hydrothermal approach, the nanocomposite effectively combines the exceptional electrical conductivity and high surface area of MXene sheets with the outstanding catalytic properties of NiFe2O4 ferrite nanoparticles. Comprehensive characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed the successful integration of NiFe2O4 nanoparticles onto the MXene nanosheets. Furthermore, X-ray photoelectron spectroscopy (XPS) revealed significant electronic interactions between the MXene substrate and NiFe2O4 ferrite nanoparticles, which are critical to the observed enhancement in catalytic performance. Electrochemical evaluations demonstrated that the synthesized Ti3C2Tx/NiFe2O4@20% (MNFO20) nanocomposite exhibits remarkable bifunctional catalytic activity, achieving an overpotential of 181 mV for the oxygen evolution reaction (OER) and 157 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA cm–2 in both alkaline and acidic environments. Notably, the nanocomposite exhibited excellent stability, retaining its catalytic performance after 3000 cycles. The synergistic interaction between the MXene nanosheet and NiFe2O4 ferrite nanoparticle leads to optimized adsorption energies for the reaction intermediates, thereby enhancing overall catalytic efficiency. This work introduces a strategy for developing high-performance and cost-effective electrocatalysts for water-splitting applications, contributing to advancements in renewable energy technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
强博弈完成签到,获得积分20
刚刚
科研通AI2S应助张老师要PB采纳,获得10
2秒前
空空空完成签到,获得积分10
2秒前
脑洞疼应助yy采纳,获得10
6秒前
香蕉觅云应助空空空采纳,获得10
7秒前
李硕完成签到,获得积分10
8秒前
JamesPei应助杨春天采纳,获得10
11秒前
13秒前
FODCOC发布了新的文献求助200
16秒前
16秒前
Siney发布了新的文献求助60
16秒前
黎明发布了新的文献求助80
17秒前
17秒前
17秒前
烟花应助灵活又幸福的胖采纳,获得10
18秒前
18秒前
19秒前
JACk发布了新的文献求助10
19秒前
劲秉应助科研通管家采纳,获得10
20秒前
pluto应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得30
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
21秒前
MchemG应助科研通管家采纳,获得30
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
无名老大应助科研通管家采纳,获得30
21秒前
劲秉应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
无名老大应助科研通管家采纳,获得30
21秒前
yy发布了新的文献求助10
21秒前
ccvv发布了新的文献求助10
22秒前
23秒前
服部平次发布了新的文献求助10
24秒前
mz发布了新的文献求助30
24秒前
ll发布了新的文献求助10
24秒前
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475587
求助须知:如何正确求助?哪些是违规求助? 3067456
关于积分的说明 9104167
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699197