亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural Estimation of Attrition in a Last-Mile Delivery Platform: The Role of Driver Heterogeneity, Compensation, and Experience

损耗 英里 最后一英里(运输) 补偿(心理学) 估计 计算机科学 业务 运营管理 经济 心理学 大地测量学 地理 医学 管理 牙科 精神分析
作者
Lina Wang,Scott Webster,Elliot Rabinovich
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2021.0367
摘要

Problem definition: We examine how to manage turnover among drivers delivering parcels for last-mile platforms. Although driver attrition in these platforms is both commonplace and costly, there is little understanding of the processes responsible for this phenomenon. Methodology/results: We collaborate with a platform to build a structural model to estimate the effects of key predictors of drivers’ decisions to leave or remain at the platform. For this estimation, we apply a dynamic discrete-choice framework in a two-step procedure that accounts for unobserved heterogeneity among drivers while circumventing the use of approximation or reduction methods commonly used to solve dynamic choice problems in the operations management domain. Drivers are compensated using a combination of regular payments that reward their productivity and subsidy payments that support them as they gain experience on the job. We find that regular pay has a greater effect on drivers’ retention. Furthermore, the marginal effects of both regular and subsidy pay diminish with drivers’ tenure at the platform, but the latter diminishes faster than the former. Additionally, we find significant heterogeneity among drivers in their unobserved nonpecuniary taste for the jobs at the platform and a significantly greater probability of retention among drivers with greater taste for these jobs. Managerial implications: Platforms can leverage our results to improve driver retention and design more profitable payment policies. We perform counterfactual analyses and develop a modeling framework to guide platforms toward this goal. Funding: This study was partially funded by a grant from TForce Logistics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0367 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助迷人的冷亦采纳,获得10
刚刚
害羞的裘完成签到 ,获得积分10
6秒前
LEEM完成签到,获得积分10
7秒前
zhangdoc发布了新的文献求助10
9秒前
10秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
10秒前
anthea完成签到,获得积分10
10秒前
zhl完成签到,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
darxpq完成签到,获得积分10
15秒前
CodeCraft应助不安服饰采纳,获得10
15秒前
15秒前
wanci应助LEEM采纳,获得10
18秒前
小王想要飞完成签到 ,获得积分10
19秒前
乐观的饭饭完成签到 ,获得积分10
20秒前
传奇3应助yongon采纳,获得10
21秒前
zhangdoc完成签到,获得积分20
21秒前
23秒前
guojin完成签到,获得积分10
25秒前
FashionBoy应助三土采纳,获得50
26秒前
LEEM发布了新的文献求助10
29秒前
31秒前
32秒前
积极的尔白完成签到 ,获得积分10
34秒前
34秒前
35秒前
zmx完成签到 ,获得积分10
36秒前
务实蓝发布了新的文献求助10
37秒前
Hayat应助杨伊森采纳,获得10
37秒前
38秒前
38秒前
Jandy发布了新的文献求助10
38秒前
fbpuf发布了新的文献求助10
38秒前
guojin发布了新的文献求助10
39秒前
39秒前
晗晗子发布了新的文献求助10
43秒前
wuran521发布了新的文献求助10
48秒前
快乐咸鱼完成签到 ,获得积分10
48秒前
模糊中正应助Jandy采纳,获得10
52秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344077
求助须知:如何正确求助?哪些是违规求助? 2971136
关于积分的说明 8646595
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451711
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661785