Structural Estimation of Attrition in a Last-Mile Delivery Platform: The Role of Driver Heterogeneity, Compensation, and Experience

损耗 英里 最后一英里(运输) 补偿(心理学) 估计 计算机科学 业务 运营管理 经济 心理学 大地测量学 地理 医学 管理 牙科 精神分析
作者
Lina Wang,Scott Webster,Elliot Rabinovich
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2021.0367
摘要

Problem definition: We examine how to manage turnover among drivers delivering parcels for last-mile platforms. Although driver attrition in these platforms is both commonplace and costly, there is little understanding of the processes responsible for this phenomenon. Methodology/results: We collaborate with a platform to build a structural model to estimate the effects of key predictors of drivers’ decisions to leave or remain at the platform. For this estimation, we apply a dynamic discrete-choice framework in a two-step procedure that accounts for unobserved heterogeneity among drivers while circumventing the use of approximation or reduction methods commonly used to solve dynamic choice problems in the operations management domain. Drivers are compensated using a combination of regular payments that reward their productivity and subsidy payments that support them as they gain experience on the job. We find that regular pay has a greater effect on drivers’ retention. Furthermore, the marginal effects of both regular and subsidy pay diminish with drivers’ tenure at the platform, but the latter diminishes faster than the former. Additionally, we find significant heterogeneity among drivers in their unobserved nonpecuniary taste for the jobs at the platform and a significantly greater probability of retention among drivers with greater taste for these jobs. Managerial implications: Platforms can leverage our results to improve driver retention and design more profitable payment policies. We perform counterfactual analyses and develop a modeling framework to guide platforms toward this goal. Funding: This study was partially funded by a grant from TForce Logistics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0367 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助张冕采纳,获得10
1秒前
汉堡包应助开心问夏采纳,获得10
1秒前
蓝天白云发布了新的文献求助10
2秒前
彭于晏应助33采纳,获得10
2秒前
天天快乐应助琪凯定理采纳,获得10
2秒前
3秒前
孝顺的雁芙完成签到,获得积分10
3秒前
ks完成签到,获得积分10
4秒前
dj完成签到,获得积分10
5秒前
6秒前
nebula应助杨桃采纳,获得10
6秒前
7秒前
桐桐应助小白白采纳,获得10
8秒前
8秒前
科研通AI2S应助迫切采纳,获得10
8秒前
卿卿完成签到,获得积分10
9秒前
卷粉儿发布了新的文献求助30
9秒前
隐形曼青应助大太阳采纳,获得30
11秒前
深情安青应助AoAoo采纳,获得10
11秒前
Strange发布了新的文献求助10
12秒前
gg发布了新的文献求助10
12秒前
zcx发布了新的文献求助10
13秒前
爆米花应助热情的未来采纳,获得30
13秒前
14秒前
14秒前
士艳完成签到,获得积分10
15秒前
gbylyf完成签到 ,获得积分10
16秒前
锦秋完成签到 ,获得积分10
16秒前
16秒前
荷欢笙完成签到,获得积分10
16秒前
Bravetwq发布了新的文献求助10
17秒前
17秒前
18秒前
Owen应助凤凰山采纳,获得10
19秒前
CodeCraft应助lxgz采纳,获得10
19秒前
20秒前
djbj2022发布了新的文献求助10
21秒前
zcx完成签到,获得积分10
21秒前
Strange完成签到,获得积分10
21秒前
nebula应助麦麦采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578