Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning

医学微生物学 肺结核 寄生虫学 热带医学 医学 机器学习 重症监护医学 计算机科学 免疫学 病理
作者
Zheyue Wang,Zhenpeng Guo,Weijia Wang,Qiang Zhang,S. Song,Yuan Xue,Zhixin Zhang,Jianming Wang
出处
期刊:BMC Infectious Diseases [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12879-025-10609-y
摘要

Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden. This study aims to evaluate TB prognosis by incorporating treatment discontinuation into the assessment framework, expanding beyond mortality and drug resistance. Seven feature selection methods and twelve machine learning algorithms were utilized to analyze admission test data from TB patients, identifying predictive features and building prognostic models. SHapley Additive exPlanations (SHAP) were applied to evaluate feature importance in top-performing models. Analysis of 1,086 TB cases showed that a K-Nearest Neighbor classifier with Mutual Information feature selection achieved an area under the receiver operation curve (AUC) of 0.87 (95% CI: 0.83–0.92). Key predictors of treatment failure included elevated levels of 5'-nucleotidase, uric acid, globulin, creatinine, cystatin C, and aspartate transaminase. SHAP analysis highlighted 5'-nucleotidase, uric acid, and globulin as having the most significant influence on predicting treatment discontinuation. Our model provides valuable insights into TB outcomes based on initial patient tests, potentially guiding prevention and control strategies. Elevated biomarker levels before therapy are associated with increased risk of treatment discontinuation, indicating their potential as early warning indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫非笑完成签到,获得积分10
刚刚
义气大象完成签到,获得积分10
刚刚
刚刚
Lzqqqqq完成签到,获得积分10
刚刚
游大侠发布了新的文献求助10
刚刚
刚刚
一路美好发布了新的文献求助10
1秒前
科研通AI2S应助小幻螺采纳,获得10
2秒前
所所应助klll采纳,获得10
2秒前
ssss发布了新的文献求助10
2秒前
2秒前
2秒前
科目三应助夏天采纳,获得10
2秒前
zho发布了新的文献求助10
3秒前
112233发布了新的文献求助50
4秒前
fanxing发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
刘一一发布了新的文献求助10
6秒前
6秒前
7秒前
夏天完成签到,获得积分10
8秒前
yoru16发布了新的文献求助20
8秒前
8秒前
爱笑的大树完成签到 ,获得积分10
8秒前
乐乐应助潘婷婷呀采纳,获得10
8秒前
Jasper应助潘婷婷呀采纳,获得10
8秒前
10秒前
xx发布了新的文献求助10
11秒前
11秒前
梅TiAmo发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
万能图书馆应助斯文无敌采纳,获得10
14秒前
14秒前
14秒前
林希希发布了新的文献求助10
15秒前
情怀应助max采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515049
求助须知:如何正确求助?哪些是违规求助? 3097391
关于积分的说明 9235300
捐赠科研通 2792358
什么是DOI,文献DOI怎么找? 1532422
邀请新用户注册赠送积分活动 712063
科研通“疑难数据库(出版商)”最低求助积分说明 707107