Exploring occupational well‐being profiles, outcomes, and predictors among Chinese teachers: A mixed‐methods approach using latent profile and decision tree analysis

倦怠 职业紧张 心理学 焦虑 潜在类模型 临床心理学 婚姻状况 心理干预 幸福 萧条(经济学) 医学 精神科 环境卫生 计算机科学 人口 经济 心理治疗师 宏观经济学 机器学习
作者
Xin Gao,Xiaolu Zhou,Frederick T. L. Leong
出处
期刊:Applied Psychology: Health and Well-being [Wiley]
卷期号:17 (1)
标识
DOI:10.1111/aphw.12640
摘要

Understanding the varied profiles of occupational well-being, their outcomes, and predictors is key to formulating effective strategies for enhancing teachers' occupational health and well-being. This study employed latent profile analysis (LPA) to identify distinct occupational well-being profiles and their outcomes among 366 Chinese teachers, and decision tree analysis to explore the factors predicting each profile. The results showed three occupational well-being profiles: burnout, engaged, and burnout-engaged. The "engaged" group exhibited normal ranges for depression and stress, along with mild anxiety. The "burnout" group demonstrated moderate depression and stress, coupled with severe anxiety. The "burnout-engaged" group was near the threshold of mild depression and moderate anxiety. The result of the decision tree model revealed that marital status, teaching experience, income, role as a class teacher, school type, and working hours significantly influenced these occupational well-being profiles. Specific combinations of variables were associated with each occupational well-being profile, offering a nuanced understanding of the risky and protective factors for teacher occupational well-being. By identifying distinct occupational well-being profiles among Chinese teachers and their outcomes, and elucidating the key predictors and their interrelations, this study provides insights into how to quickly screen for teachers in need of help at work, and how to design targeted interventions for different teachers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
情怀应助shirleeyeahe采纳,获得10
刚刚
1秒前
元元应助xzy采纳,获得20
1秒前
泥花完成签到,获得积分10
1秒前
247793325完成签到,获得积分20
1秒前
眼睛大的冰岚完成签到,获得积分10
1秒前
YY完成签到 ,获得积分10
1秒前
2秒前
雨天慢行完成签到,获得积分10
2秒前
韦威风发布了新的文献求助10
2秒前
科目三应助深情的不评采纳,获得10
2秒前
飞快的梦易完成签到,获得积分10
3秒前
Akim应助1b采纳,获得10
3秒前
末岛完成签到,获得积分10
3秒前
sweetbearm应助benben采纳,获得10
3秒前
3秒前
4秒前
科研通AI5应助今今采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
YY完成签到,获得积分10
4秒前
首席医官完成签到,获得积分10
5秒前
坚定迎天完成签到,获得积分10
5秒前
Zzzoey发布了新的文献求助10
6秒前
搜集达人应助小罗飞飞飞采纳,获得10
6秒前
詹卫卫完成签到 ,获得积分10
6秒前
6秒前
宇_发布了新的文献求助20
6秒前
7秒前
esdeath发布了新的文献求助10
7秒前
云轩完成签到,获得积分10
7秒前
7秒前
7秒前
自然乐松发布了新的文献求助10
7秒前
yesir完成签到,获得积分10
8秒前
普雅花的等待完成签到,获得积分10
8秒前
想人陪的以云完成签到,获得积分10
9秒前
科研通AI5应助德德采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794