CardiOT: Towards Interpretable Drug Cardiotoxicity Prediction Using Optimal Transport and Kolmogorov-Arnold Networks

心脏毒性 计算机科学 人工智能 药品 医学 内科学 药理学 化疗
作者
Xinyu Zhang,Hao Wang,Zhenya Du,Linlin Zhuo,Xiangzheng Fu,Dongsheng Cao,Boqia Xie,Keqin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3510297
摘要

Investigating the inhibitory effects of compounds on cardiac ion channels is essential for assessing cardiac drug safety. Consequently, researchers have developed computational models to evaluate combined cardiotoxicity (CCT) on cardiac ion channels. However, limitations in experimental data often cause issues like uneven data distribution and scarcity. Additionally, existing models primarily emphasize atomic information flow within graph neural networks (GNNs) while overlooking chemical bonds, leading to inadequate recognition of key structures. Therefore, this study integrates optimal transport (OT), structure remapping (SR), and Kolmogorov-Arnold networks (KANs) into a GNN-based CCT prediction model, CardiOT. First, the proposed CardiOT model employs OT pooling to optimize sample-feature joint distribution using expectation maximization, identifying "important" samplefeature pairs. Additionally, SR technology is used to emphasize the role of chemical bond information in message propagation. KAN technology is integrated to greatly enhance model interpretability. In summary, the model mitigates challenges related to uneven data distribution and scarcity. Multiple experiments on public datasets confirm the model's robust performance. We anticipate that this model will provide deeper insights into compound inhibition mechanisms on cardiac ion channels and reduce toxicity risks. Our code and data are accessible at: https://github.com/2014402680/CCT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨阳发布了新的文献求助10
刚刚
刚刚
ymm发布了新的文献求助10
1秒前
2秒前
orixero应助YMAO采纳,获得10
3秒前
入门的橙橙完成签到 ,获得积分10
4秒前
杳鸢应助cyy采纳,获得10
4秒前
魔幻大有完成签到 ,获得积分10
6秒前
薇薇完成签到,获得积分10
6秒前
神勇尔烟关注了科研通微信公众号
6秒前
7秒前
7秒前
轩子发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
大胆胡萝卜完成签到,获得积分10
8秒前
云里完成签到,获得积分10
10秒前
10秒前
10秒前
Rogga完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Yoopakho发布了新的文献求助10
11秒前
科研通AI5应助kingslee采纳,获得10
11秒前
Lucas应助眼睛大迎松采纳,获得10
12秒前
12秒前
钱俊发布了新的文献求助10
12秒前
12秒前
lijun发布了新的文献求助10
13秒前
laola发布了新的文献求助10
13秒前
cua发布了新的文献求助10
14秒前
柚子发布了新的文献求助10
15秒前
科研通AI5应助shuang采纳,获得30
15秒前
15秒前
15秒前
15秒前
南烛发布了新的文献求助10
16秒前
庆山发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583709
求助须知:如何正确求助?哪些是违规求助? 3152941
关于积分的说明 9494725
捐赠科研通 2855533
什么是DOI,文献DOI怎么找? 1569583
邀请新用户注册赠送积分活动 735443
科研通“疑难数据库(出版商)”最低求助积分说明 721228