Large-scale multi-center CT and MRI segmentation of pancreas with deep learning

人工智能 深度学习 分割 比例(比率) 计算机视觉 中心(范畴论) 计算机科学 模式识别(心理学) 放射科 医学 地图学 地理 结晶学 化学
作者
Zheyuan Zhang,Elif Keleş,Görkem Durak,Yavuz Taktak,Onkar Susladkar,Vandan Gorade,Debesh Jha,Asli C. Ormeci,Alpay Medetalibeyoğlu,Lanhong Yao,Bin Wang,Ilkin Isler,Linkai Peng,Hongyi Pan,Camila Lopes Vendrami,Amir Bourhani,Yury Velichko,Boqing Gong,Concetto Spampinato,Ayis Pyrros
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103382-103382 被引量:31
标识
DOI:10.1016/j.media.2024.103382
摘要

Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022. We also collected CT scans of 1,350 patients from publicly available sources for benchmarking purposes. We introduced a new pancreas segmentation method, called PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. We tested PanSegNet's accuracy in cross-modality (a total of 2,117 scans) and cross-center settings with Dice and Hausdorff distance (HD95) evaluation metrics. We used Cohen's kappa statistics for intra and inter-rater agreement evaluation and paired t-tests for volume and Dice comparisons, respectively. For segmentation accuracy, we achieved Dice coefficients of 88.3% (±7.2%, at case level) with CT, 85.0% (±7.9%) with T1 W MRI, and 86.3% (±6.4%) with T2 W MRI. There was a high correlation for pancreas volume prediction with R2 of 0.91, 0.84, and 0.85 for CT, T1 W, and T2 W, respectively. We found moderate inter-observer (0.624 and 0.638 for T1 W and T2 W MRI, respectively) and high intra-observer agreement scores. All MRI data is made available at https://osf.io/kysnj/. Our source code is available at https://github.com/NUBagciLab/PaNSegNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
牛奶咖啡完成签到,获得积分10
1秒前
yiyi完成签到 ,获得积分10
1秒前
cat发布了新的文献求助10
1秒前
大个应助小董采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
拓扑超导相变完成签到 ,获得积分10
1秒前
1秒前
花儿向杨开完成签到,获得积分10
2秒前
慕青应助帅帅厅采纳,获得10
2秒前
2秒前
99完成签到,获得积分10
3秒前
3秒前
笛子完成签到,获得积分10
3秒前
3秒前
bbll完成签到,获得积分10
3秒前
3秒前
贪玩擎汉发布了新的文献求助10
3秒前
rr完成签到,获得积分10
3秒前
一一发布了新的文献求助10
4秒前
尊敬的半梅完成签到 ,获得积分10
4秒前
语恒完成签到,获得积分10
4秒前
4秒前
aliderichang完成签到 ,获得积分10
5秒前
5秒前
112450195完成签到,获得积分20
5秒前
梦XING完成签到 ,获得积分10
5秒前
5秒前
yanfang发布了新的文献求助10
5秒前
飘逸DH完成签到,获得积分10
5秒前
樱铃完成签到,获得积分10
6秒前
6秒前
沐沐完成签到,获得积分10
6秒前
岁岁平安发布了新的文献求助10
6秒前
维C完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
星辰坠于海应助欣慰可愁采纳,获得10
6秒前
7秒前
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585741
求助须知:如何正确求助?哪些是违规求助? 4669361
关于积分的说明 14776911
捐赠科研通 4618356
什么是DOI,文献DOI怎么找? 2530650
邀请新用户注册赠送积分活动 1499380
关于科研通互助平台的介绍 1467750