Large-scale multi-center CT and MRI segmentation of pancreas with deep learning

人工智能 深度学习 分割 比例(比率) 计算机视觉 中心(范畴论) 计算机科学 模式识别(心理学) 放射科 医学 地图学 地理 化学 结晶学
作者
Zheyuan Zhang,Elif Keleş,Görkem Durak,Yavuz Taktak,Onkar Susladkar,Vandan Gorade,Debesh Jha,Asli C. Ormeci,Alpay Medetalibeyoğlu,Lanhong Yao,Bin Wang,Ilkin Isler,Linkai Peng,Hongyi Pan,Camila Lopes Vendrami,Amir Bourhani,Yury Velichko,Boqing Gong,Concetto Spampinato,Ayis Pyrros
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103382-103382 被引量:14
标识
DOI:10.1016/j.media.2024.103382
摘要

Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022. We also collected CT scans of 1,350 patients from publicly available sources for benchmarking purposes. We introduced a new pancreas segmentation method, called PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. We tested PanSegNet's accuracy in cross-modality (a total of 2,117 scans) and cross-center settings with Dice and Hausdorff distance (HD95) evaluation metrics. We used Cohen's kappa statistics for intra and inter-rater agreement evaluation and paired t-tests for volume and Dice comparisons, respectively. For segmentation accuracy, we achieved Dice coefficients of 88.3% (±7.2%, at case level) with CT, 85.0% (±7.9%) with T1 W MRI, and 86.3% (±6.4%) with T2 W MRI. There was a high correlation for pancreas volume prediction with R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
va发布了新的文献求助10
刚刚
勤奋高丽发布了新的文献求助10
刚刚
qing1245发布了新的文献求助10
刚刚
笨笨秋白发布了新的文献求助10
刚刚
Owen应助xzp采纳,获得10
1秒前
1秒前
YU发布了新的文献求助10
1秒前
1秒前
1秒前
JABBA发布了新的文献求助10
2秒前
CipherSage应助hjjjjj1采纳,获得10
2秒前
大力云朵发布了新的文献求助10
2秒前
含糊的幼旋完成签到,获得积分10
2秒前
丘比特应助火星上大白菜采纳,获得10
2秒前
zhang完成签到,获得积分10
2秒前
4秒前
supwow发布了新的文献求助20
4秒前
4秒前
槿荣完成签到,获得积分10
4秒前
4秒前
动听千风发布了新的文献求助10
5秒前
momo完成签到,获得积分10
5秒前
小龙虾完成签到,获得积分10
5秒前
科研通AI6应助tinghai86采纳,获得10
5秒前
段段发布了新的文献求助10
6秒前
6秒前
6秒前
tuyfytjt完成签到,获得积分20
6秒前
liu完成签到,获得积分20
6秒前
6秒前
lyy发布了新的文献求助10
6秒前
星夜吹笛牛上完成签到,获得积分10
6秒前
滑腻腻的小鱼完成签到,获得积分10
7秒前
DijiaXu应助畅快焦采纳,获得10
7秒前
7秒前
xxx发布了新的文献求助10
8秒前
Sheart发布了新的文献求助10
9秒前
非哲发布了新的文献求助10
9秒前
翁怜晴发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562