Large-scale multi-center CT and MRI segmentation of pancreas with deep learning

人工智能 深度学习 分割 比例(比率) 计算机视觉 中心(范畴论) 计算机科学 模式识别(心理学) 放射科 医学 地图学 地理 化学 结晶学
作者
Zheyuan Zhang,Elif Keleş,Görkem Durak,Yavuz Taktak,Onkar Susladkar,Vandan Gorade,Debesh Jha,Asli C. Ormeci,Alpay Medetalibeyoğlu,Lanhong Yao,Bin Wang,Ilkin Isler,Linkai Peng,Hongyi Pan,Camila Lopes Vendrami,Amir Bourhani,Yury Velichko,Boqing Gong,Concetto Spampinato,Ayis Pyrros
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103382-103382 被引量:7
标识
DOI:10.1016/j.media.2024.103382
摘要

Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022. We also collected CT scans of 1,350 patients from publicly available sources for benchmarking purposes. We introduced a new pancreas segmentation method, called PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. We tested PanSegNet's accuracy in cross-modality (a total of 2,117 scans) and cross-center settings with Dice and Hausdorff distance (HD95) evaluation metrics. We used Cohen's kappa statistics for intra and inter-rater agreement evaluation and paired t-tests for volume and Dice comparisons, respectively. For segmentation accuracy, we achieved Dice coefficients of 88.3% (±7.2%, at case level) with CT, 85.0% (±7.9%) with T1 W MRI, and 86.3% (±6.4%) with T2 W MRI. There was a high correlation for pancreas volume prediction with R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜战斗机完成签到,获得积分10
1秒前
3秒前
玩命的绿草完成签到,获得积分20
4秒前
美丽的若之完成签到,获得积分20
4秒前
4秒前
5秒前
无花果应助朴素念波采纳,获得10
5秒前
小鱼儿发布了新的文献求助10
7秒前
刘桔完成签到,获得积分10
9秒前
黑桃3发布了新的文献求助10
10秒前
科研吧完成签到,获得积分10
10秒前
喵喵7完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
传奇3应助洋葱Qoo采纳,获得10
12秒前
13秒前
13秒前
NexusExplorer应助典雅的俊驰采纳,获得10
14秒前
14秒前
英姑应助开心超人采纳,获得10
14秒前
我的名字叫小琨完成签到,获得积分10
15秒前
专注的静白关注了科研通微信公众号
17秒前
帅冰冰冰完成签到,获得积分10
17秒前
bkagyin应助子凯采纳,获得10
17秒前
涂惠芳发布了新的文献求助10
18秒前
小辣里发布了新的文献求助10
19秒前
21秒前
科研通AI2S应助YU采纳,获得10
21秒前
帅冰冰冰发布了新的文献求助10
21秒前
Owen应助花花采纳,获得10
23秒前
30秒前
31秒前
面壁思过应助YU采纳,获得10
31秒前
iNk应助安菲尔德采纳,获得20
31秒前
siriuslee99发布了新的文献求助10
33秒前
34秒前
34秒前
夏雨完成签到,获得积分10
34秒前
一事无成的研一完成签到 ,获得积分10
36秒前
36秒前
wer完成签到 ,获得积分10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232