Large-scale multi-center CT and MRI segmentation of pancreas with deep learning

人工智能 深度学习 分割 比例(比率) 计算机视觉 中心(范畴论) 计算机科学 模式识别(心理学) 放射科 医学 地图学 地理 结晶学 化学
作者
Zheyuan Zhang,Elif Keleş,Görkem Durak,Yavuz Taktak,Onkar Susladkar,Vandan Gorade,Debesh Jha,Asli C. Ormeci,Alpay Medetalibeyoğlu,Lanhong Yao,Bin Wang,Ilkin Isler,Linkai Peng,Hongyi Pan,Camila Lopes Vendrami,Amir Bourhani,Yury Velichko,Boqing Gong,Concetto Spampinato,Ayis Pyrros
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103382-103382 被引量:31
标识
DOI:10.1016/j.media.2024.103382
摘要

Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022. We also collected CT scans of 1,350 patients from publicly available sources for benchmarking purposes. We introduced a new pancreas segmentation method, called PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. We tested PanSegNet's accuracy in cross-modality (a total of 2,117 scans) and cross-center settings with Dice and Hausdorff distance (HD95) evaluation metrics. We used Cohen's kappa statistics for intra and inter-rater agreement evaluation and paired t-tests for volume and Dice comparisons, respectively. For segmentation accuracy, we achieved Dice coefficients of 88.3% (±7.2%, at case level) with CT, 85.0% (±7.9%) with T1 W MRI, and 86.3% (±6.4%) with T2 W MRI. There was a high correlation for pancreas volume prediction with R2 of 0.91, 0.84, and 0.85 for CT, T1 W, and T2 W, respectively. We found moderate inter-observer (0.624 and 0.638 for T1 W and T2 W MRI, respectively) and high intra-observer agreement scores. All MRI data is made available at https://osf.io/kysnj/. Our source code is available at https://github.com/NUBagciLab/PaNSegNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
木木完成签到,获得积分10
1秒前
2秒前
王敬顺发布了新的文献求助10
2秒前
无奈的幻雪完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
jueding应助尹善冰采纳,获得10
5秒前
lyy发布了新的文献求助10
5秒前
梓树发布了新的文献求助10
5秒前
5秒前
沐晨浠完成签到,获得积分10
6秒前
十号完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
英俊的铭应助淑芬采纳,获得10
7秒前
李爱国应助斯文123采纳,获得10
7秒前
王智勇发布了新的文献求助10
7秒前
wanci应助风吹阔叶采纳,获得10
7秒前
8秒前
8秒前
8秒前
科研求助111完成签到,获得积分10
9秒前
Alice完成签到,获得积分10
9秒前
Jacquielin完成签到,获得积分10
9秒前
嗯嗯发布了新的文献求助10
9秒前
10秒前
10秒前
我是老大应助一加一采纳,获得10
10秒前
pj发布了新的文献求助10
11秒前
嘿嘿发布了新的文献求助10
12秒前
浪子发布了新的文献求助10
13秒前
13秒前
Chen发布了新的文献求助30
13秒前
jiojioya完成签到,获得积分10
13秒前
卷卷发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049