Large-scale multi-center CT and MRI segmentation of pancreas with deep learning

人工智能 深度学习 分割 比例(比率) 计算机视觉 中心(范畴论) 计算机科学 模式识别(心理学) 放射科 医学 地图学 地理 化学 结晶学
作者
Zheyuan Zhang,Elif Keleş,Görkem Durak,Yavuz Taktak,Onkar Susladkar,Vandan Gorade,Debesh Jha,Asli C. Ormeci,Alpay Medetalibeyoğlu,Lanhong Yao,Bin Wang,Ilkin Isler,Linkai Peng,Hongyi Pan,Camila Lopes Vendrami,Amir Bourhani,Yury Velichko,Boqing Gong,Concetto Spampinato,Ayis Pyrros,Pallavi Tiwari,Derk C.F. Klatte,Megan Engels,Sanne Hoogenboom,Candice W. Bolan,Emil Agarunov,Nassier Harfouch,Chenchan Huang,Marco J. Bruno,Ivo G. Schoots,Rajesh N. Keswani,Frank H. Miller,Tamas A. Gonda,Cemal Yazıcı,Temel Tirkes,Barış Türkbey,Michael B. Wallace,Ulaş Bağcı
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103382-103382 被引量:2
标识
DOI:10.1016/j.media.2024.103382
摘要

Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022. We also collected CT scans of 1,350 patients from publicly available sources for benchmarking purposes. We introduced a new pancreas segmentation method, called PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. We tested PanSegNet's accuracy in cross-modality (a total of 2,117 scans) and cross-center settings with Dice and Hausdorff distance (HD95) evaluation metrics. We used Cohen's kappa statistics for intra and inter-rater agreement evaluation and paired t-tests for volume and Dice comparisons, respectively. For segmentation accuracy, we achieved Dice coefficients of 88.3% (±7.2%, at case level) with CT, 85.0% (±7.9%) with T1 W MRI, and 86.3% (±6.4%) with T2 W MRI. There was a high correlation for pancreas volume prediction with R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到,获得积分20
刚刚
桐桐应助852采纳,获得30
刚刚
能干凡松完成签到 ,获得积分10
2秒前
复杂的箴发布了新的文献求助10
2秒前
sworde完成签到,获得积分10
2秒前
学术通zzz应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
march应助科研通管家采纳,获得30
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得20
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
模糊中正应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
忆茶戏发布了新的文献求助10
4秒前
兔子完成签到,获得积分10
5秒前
tcmz9完成签到,获得积分10
5秒前
hjjj应助独特的叫兽采纳,获得20
6秒前
8秒前
某丞完成签到,获得积分10
10秒前
11秒前
Moira完成签到,获得积分10
12秒前
ffffffflzx666完成签到,获得积分10
13秒前
刘佳宇关注了科研通微信公众号
13秒前
Lily发布了新的文献求助10
13秒前
15秒前
Belinda发布了新的文献求助10
17秒前
19秒前
fsw完成签到,获得积分10
20秒前
Pony发布了新的文献求助10
20秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342733
求助须知:如何正确求助?哪些是违规求助? 2969798
关于积分的说明 8641316
捐赠科研通 2649778
什么是DOI,文献DOI怎么找? 1450871
科研通“疑难数据库(出版商)”最低求助积分说明 671993
邀请新用户注册赠送积分活动 661308