Experimental drugs in clinical trials for COPD: artificial intelligence via machine learning approach to predict the successful advance from early-stage development to approval

医学 慢性阻塞性肺病 临床试验 药物开发 机器学习 人工智能 药理学 计算机科学 内科学 药品
作者
Luigino Calzetta,Elena Pistocchini,Alfredo Chetta,Paola Rogliani,Mario Cazzola
出处
期刊:Expert Opinion on Investigational Drugs [Informa]
卷期号:32 (6): 525-536 被引量:15
标识
DOI:10.1080/13543784.2023.2230138
摘要

ABSTRACTIntroduction Therapeutic advances in drug therapy of chronic obstructive pulmonary disease (COPD) really effective in suppressing the pathological processes underlying the disease deterioration are still needed. Artificial Intelligence (AI) via Machine Learning (ML) may represent an effective tool to predict clinical development of investigational agents.Areal covered Experimental drugs in Phase I and II development for COPD from early 2014 to late 2022 were identified in the ClinicalTrials.gov database. Different ML models, trained from prior knowledge on clinical trial success, were used to predict the probability that experimental drugs will successfully advance toward approval in COPD, according to Bayesian inference as follows: ≤25% low probability, >25% and ≤50% moderate probability, >50% and ≤75% high probability, and >75% very high probability.Expert opinion The Artificial Neural Network and Random Forest ML models indicated that, among the current experimental drugs in clinical trials for COPD, only the bifunctional muscarinic antagonist - β2-adrenoceptor agonists (MABA) navafenterol and batefenterol, the inhaled corticosteroid (ICS)/MABA fluticasone furoate/batefenterol, and the bifunctional phosphodiesterase (PDE) 3/4 inhibitor ensifentrine resulted to have a moderate to very high probability of being approved in the next future, however not before 2025.KEYWORDS: Artificial IntelligenceCOPDensifentrineexperimental drugsMABAmachine learningphosphodiesterase inhibitorprecision medicine Article highlights Artificial Intelligence via Machine Learning models is an effective tool to predict the clinical development of investigational agents.According to accurate Machine Learning models, bifunctional MABA and PDE3/4 inhibitors have a moderate to very high probability of being approved in COPD.In the best-case scenario, ensifentrine should be approved around in 2025, whereas navafenterol and batefenterol around in 2028.Declaration of interestL. Cazzola has participated as an advisor in scientific meetings under the sponsorship of Boehringer Ingelheim and Novartis, received nonfinancial support from AstraZeneca, a research grant partially funded by Chiesi Farmaceutici, Boehringer Ingelheim, Novartis, and Almirall, and is or has been a consultant to ABC Farmaceutici, Edmond Pharma, Zambon, Verona Pharma, and Ockham Biotech. His department was funded by Almirall, Boehringer Ingelheim, Chiesi Farmaceutici, Novartis, Zambon.Pistocchini reports there are no competing interests to declare.Chetta reports grants from Menarini and Astra Zeneca; personal fee from Chiesi.Rogliani has participated as a lecturer and advisor in scientific meetings and courses under the sponsorship of Almirall, AstraZeneca, Biofutura, Boehringer Ingelheim, Chiesi Farmaceutici, GlaxoSmithKline, Menarini Group, Mundipharma, and Novartis. Her department was funded by Almirall, Boehringer Ingelheim, Chiesi Farmaceutici Novartis, and Zambon. M.C. reports grants and personal fees from Boehringer Ingelheim, grants and personal fees from Novartis, personal fees from AstraZeneca, personal fees from Chiesi Farmaceutici, grants and personal fees from Almirall, personal fees from ABC Farmaceutici, personal fees from Edmond Pharma, grants and personal fees from Zambon, personal fees from Verona Pharma, personal fees from Ockham Biotech, personal fees from Biofutura, personal fees from GlaxoSmithKline, personal fees from Menarini, personal fees from Lallemand, personal fees from Mundipharma, personal fees from Pfizer. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresA reviewer on this manuscript has disclosed Grants and/or honoraria from several manufacturers of treatments for COPD or related conditions, namely AstraZeneca, Chiesi, GSK, Boehringer Ingelheim, CSL Behring, Grifols Biotherapeutics. Peer reviewers on this manuscript have no other relevant financial relationships or otherwise to disclose.Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/13543784.2023.2230138.Additional informationFundingThis work has been partially supported by the MUR-PNRR M4C2I1.3 PE6 project PE00000019 Heal Italia (to P.Rogliani)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助300采纳,获得10
刚刚
2秒前
kygingying发布了新的文献求助30
3秒前
乖拉完成签到,获得积分10
3秒前
ikun666发布了新的文献求助10
3秒前
研友_VZG7GZ应助于yu采纳,获得10
5秒前
6秒前
7秒前
裴佳晨发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
可乐鸡翅完成签到,获得积分10
12秒前
迷路的十四应助小鳄鱼采纳,获得10
12秒前
Zx_1993应助hhhg采纳,获得50
12秒前
将将将发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
苑阿宇完成签到 ,获得积分10
14秒前
14秒前
迪歪歪完成签到,获得积分20
14秒前
300发布了新的文献求助10
14秒前
16秒前
风趣手链发布了新的文献求助10
17秒前
隐形曼青应助可乐鸡翅采纳,获得10
17秒前
SciGPT应助迪歪歪采纳,获得10
17秒前
18秒前
wonderting完成签到,获得积分10
18秒前
将将将完成签到,获得积分10
21秒前
21秒前
Dreamable完成签到,获得积分10
21秒前
岸在海的深处完成签到 ,获得积分0
23秒前
Yuki应助binbinbin采纳,获得10
25秒前
石翎完成签到,获得积分10
26秒前
26秒前
jjr发布了新的文献求助10
26秒前
30秒前
31秒前
深情安青应助Unpredictable采纳,获得10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598801
求助须知:如何正确求助?哪些是违规求助? 4684195
关于积分的说明 14834179
捐赠科研通 4664847
什么是DOI,文献DOI怎么找? 2537406
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470655