清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer

拉曼光谱 公制(单位) 人工智能 计算机科学 深度学习 移动设备 模式识别(心理学) 计算机视觉 机器学习 光学 工程类 物理 运营管理 操作系统
作者
Yaoyi Cai,Zhiyi Yao,Xi Cheng,Yixuan He,Shiwen Li,Jiaji Pan
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:303: 123085-123085
标识
DOI:10.1016/j.saa.2023.123085
摘要

Rapid identification of unknown material samples using portable or handheld Raman spectroscopy detection equipment is becoming a common analytical tool. However, the design and implementation of a set of Raman spectroscopy-based devices for substance identification must include spectral sampling of standard reference substance samples, resolution matching between different devices, and the training process of the corresponding classification models. The process of selecting a suitable classification model is frequently time-consuming, and when the number of classes of substances to be recognised increases dramatically, recognition accuracy decreases dramatically. In this paper, we propose a fast classification method for Raman spectra based on deep metric learning networks combined with the Gramian angular difference field (GADF) image generation approach. First, we uniformly convert Raman spectra acquired at different resolutions into GADF images of the same resolution, addressing spectral dimension disparities induced by resolution differences in different Raman spectroscopy detection devices. Second, a network capable of implementing nonlinear distance measurements between GADF images of different classes of substances is designed based on a deep metric learning approach. The Raman spectra of 450 different mineral classes obtained from the RRUFF database were converted into GADF images and used to train this deep metric learning network. Finally, the trained network can be installed on an embedded computing platform and used in conjunction with portable or handheld Raman spectroscopic detection sensors to perform material identification tasks at various scales. A series of experiments demonstrate that our trained deep metric learning network outperforms existing mainstream machine learning models on classification tasks of different sizes. For the two tasks of Raman spectral classification of natural minerals of 260 classes and Raman spectral classification of pathogenic bacteria of 8 classes with significant noise, our suggested model achieved 98.05% and 90.13% classification accuracy, respectively. Finally, we also deployed the model in a handheld Raman spectrometer and conducted identification experiments on 350 samples of chemical substances attributed to 32 classes, achieving a classification accuracy of 99.14%. These results demonstrate that our method can greatly improve the efficiency of developing Raman spectroscopy-based substance detection devices and can be widely used in tasks of unknown substance identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
bc应助科研通管家采纳,获得10
9秒前
10秒前
睿睿斌斌完成签到,获得积分10
10秒前
lynn完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
17秒前
20秒前
30秒前
量子星尘发布了新的文献求助10
34秒前
LT完成签到 ,获得积分0
36秒前
39秒前
量子星尘发布了新的文献求助10
48秒前
51秒前
poppysss完成签到,获得积分10
53秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
飞云完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Johnson完成签到 ,获得积分10
1分钟前
1分钟前
新奇完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
三人水明完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
青桔柠檬完成签到 ,获得积分10
2分钟前
bc应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
兜兜揣满糖完成签到 ,获得积分10
2分钟前
lingling完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734549