清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Solving the Multi-robot task allocation with functional tasks based on a hyper-heuristic algorithm

计算机科学 任务(项目管理) 启发式 机器人 人工智能 数学优化 数学 管理 经济
作者
Fuhan Yan,Kai Di
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110628-110628 被引量:7
标识
DOI:10.1016/j.asoc.2023.110628
摘要

Multi-robot task allocation (MRTA) problem is a classical problem in multi-robot systems. The most common assumption in MRTA is that all the tasks need to be completed with the time cost as small as possible. It is worth noting that some tasks may be optional in some real-world situations, i.e., the robots do not necessarily need to complete all tasks. These optional tasks do not limit the achievement of the goal, but the completion of these tasks will lead to some functional effects (e.g., making other tasks easier to be completed). Therefore, these optional tasks can be called "functional task". Different from functional tasks, if a task must be completed, this task can be called "compulsory task". In this paper, we study the problem where the robots need to minimize the time cost of completing all compulsory tasks and can selectively complete some functional tasks. The existence of the functional tasks greatly increases the solution space of MRTA, because the functional tasks should be firstly suitably selected and then suitably allocated. Existing related algorithms are usually based on the assumption that all tasks must be allocated. Thus, these algorithms cannot suitably deal with functional tasks. We analyze the characteristics of this problem and present a new hyper-heuristic algorithm. The low-level heuristic (LLH) in hyper-heuristic is designed to score the functional tasks by using influence diffusion model. The high-level strategy (HLS) seeks the optimal values of the key parameters in the influence diffusion model based on particle swarm optimization (PSO). Extensive simulated experiments are presented to comprehensively analyze the proposed algorithm. The proposed hyper-heuristic is compared with greedy algorithm and two meta-heuristic algorithms. Based on the simulated data, it is known that the hyper-heuristic algorithm can outperform the benchmark algorithms especially when the number of functional tasks is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caizhonglun应助wlscj采纳,获得200
5秒前
香蕉觅云应助yukky采纳,获得30
18秒前
爱静静应助科研通管家采纳,获得10
19秒前
爱静静应助科研通管家采纳,获得30
19秒前
31秒前
33秒前
yukky发布了新的文献求助30
37秒前
雨城完成签到 ,获得积分10
50秒前
yukky完成签到,获得积分10
52秒前
研友_ngqgY8发布了新的文献求助20
52秒前
1分钟前
研友_ngqgY8发布了新的文献求助10
1分钟前
年年有余完成签到,获得积分10
1分钟前
xun完成签到,获得积分20
1分钟前
ddd发布了新的文献求助10
1分钟前
拼搏的帽子完成签到 ,获得积分10
1分钟前
悄悄完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
xuan2022完成签到,获得积分10
2分钟前
淡定汉堡完成签到 ,获得积分10
2分钟前
爆米花应助RU0ONE采纳,获得10
2分钟前
qin202569完成签到,获得积分10
2分钟前
3分钟前
cloak发布了新的文献求助10
3分钟前
李健应助cloak采纳,获得10
3分钟前
科研通AI6应助ddd采纳,获得10
3分钟前
3分钟前
芹123发布了新的文献求助10
3分钟前
3分钟前
tian发布了新的文献求助10
3分钟前
oleskarabach发布了新的文献求助10
4分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分0
4分钟前
如歌完成签到,获得积分10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314511
求助须知:如何正确求助?哪些是违规求助? 4457521
关于积分的说明 13867957
捐赠科研通 4346804
什么是DOI,文献DOI怎么找? 2387325
邀请新用户注册赠送积分活动 1381503
关于科研通互助平台的介绍 1350481