Solving the Multi-robot task allocation with functional tasks based on a hyper-heuristic algorithm

计算机科学 任务(项目管理) 启发式 机器人 人工智能 数学优化 数学 管理 经济
作者
Fuhan Yan,Kai Di
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110628-110628 被引量:7
标识
DOI:10.1016/j.asoc.2023.110628
摘要

Multi-robot task allocation (MRTA) problem is a classical problem in multi-robot systems. The most common assumption in MRTA is that all the tasks need to be completed with the time cost as small as possible. It is worth noting that some tasks may be optional in some real-world situations, i.e., the robots do not necessarily need to complete all tasks. These optional tasks do not limit the achievement of the goal, but the completion of these tasks will lead to some functional effects (e.g., making other tasks easier to be completed). Therefore, these optional tasks can be called "functional task". Different from functional tasks, if a task must be completed, this task can be called "compulsory task". In this paper, we study the problem where the robots need to minimize the time cost of completing all compulsory tasks and can selectively complete some functional tasks. The existence of the functional tasks greatly increases the solution space of MRTA, because the functional tasks should be firstly suitably selected and then suitably allocated. Existing related algorithms are usually based on the assumption that all tasks must be allocated. Thus, these algorithms cannot suitably deal with functional tasks. We analyze the characteristics of this problem and present a new hyper-heuristic algorithm. The low-level heuristic (LLH) in hyper-heuristic is designed to score the functional tasks by using influence diffusion model. The high-level strategy (HLS) seeks the optimal values of the key parameters in the influence diffusion model based on particle swarm optimization (PSO). Extensive simulated experiments are presented to comprehensively analyze the proposed algorithm. The proposed hyper-heuristic is compared with greedy algorithm and two meta-heuristic algorithms. Based on the simulated data, it is known that the hyper-heuristic algorithm can outperform the benchmark algorithms especially when the number of functional tasks is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jacob258发布了新的文献求助10
刚刚
顾顾发布了新的文献求助10
刚刚
豆芽关注了科研通微信公众号
刚刚
1秒前
刘晓丹发布了新的文献求助10
1秒前
李发行完成签到,获得积分10
1秒前
2秒前
春儿发布了新的文献求助10
2秒前
后知不觉完成签到,获得积分10
2秒前
3秒前
微笑完成签到,获得积分10
3秒前
3秒前
向前完成签到,获得积分10
4秒前
搬砖美少女完成签到,获得积分10
4秒前
科研通AI5应助yang采纳,获得10
4秒前
满意外套完成签到,获得积分10
5秒前
qwa完成签到 ,获得积分20
5秒前
sky同学发布了新的文献求助10
5秒前
冷月fan发布了新的文献求助10
6秒前
6秒前
王三发布了新的文献求助10
7秒前
xutong de完成签到,获得积分10
7秒前
yy完成签到 ,获得积分10
7秒前
8秒前
SHUANG发布了新的文献求助10
8秒前
丘比特应助刘晓丹采纳,获得10
8秒前
黑月发布了新的文献求助10
8秒前
9秒前
9秒前
小马甲应助神勇若雁采纳,获得10
10秒前
大个应助狗宅采纳,获得10
10秒前
七一桉完成签到,获得积分10
11秒前
冷月fan完成签到,获得积分10
11秒前
春风十里完成签到,获得积分10
12秒前
12秒前
一声空发布了新的文献求助10
13秒前
13秒前
天真不愁完成签到 ,获得积分10
13秒前
豆芽发布了新的文献求助10
14秒前
cary发布了新的文献求助10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482