Solving the Multi-robot task allocation with functional tasks based on a hyper-heuristic algorithm

计算机科学 任务(项目管理) 启发式 机器人 人工智能 数学优化 数学 管理 经济
作者
Fuhan Yan,Kai Di
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110628-110628 被引量:7
标识
DOI:10.1016/j.asoc.2023.110628
摘要

Multi-robot task allocation (MRTA) problem is a classical problem in multi-robot systems. The most common assumption in MRTA is that all the tasks need to be completed with the time cost as small as possible. It is worth noting that some tasks may be optional in some real-world situations, i.e., the robots do not necessarily need to complete all tasks. These optional tasks do not limit the achievement of the goal, but the completion of these tasks will lead to some functional effects (e.g., making other tasks easier to be completed). Therefore, these optional tasks can be called "functional task". Different from functional tasks, if a task must be completed, this task can be called "compulsory task". In this paper, we study the problem where the robots need to minimize the time cost of completing all compulsory tasks and can selectively complete some functional tasks. The existence of the functional tasks greatly increases the solution space of MRTA, because the functional tasks should be firstly suitably selected and then suitably allocated. Existing related algorithms are usually based on the assumption that all tasks must be allocated. Thus, these algorithms cannot suitably deal with functional tasks. We analyze the characteristics of this problem and present a new hyper-heuristic algorithm. The low-level heuristic (LLH) in hyper-heuristic is designed to score the functional tasks by using influence diffusion model. The high-level strategy (HLS) seeks the optimal values of the key parameters in the influence diffusion model based on particle swarm optimization (PSO). Extensive simulated experiments are presented to comprehensively analyze the proposed algorithm. The proposed hyper-heuristic is compared with greedy algorithm and two meta-heuristic algorithms. Based on the simulated data, it is known that the hyper-heuristic algorithm can outperform the benchmark algorithms especially when the number of functional tasks is large.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色映雁完成签到 ,获得积分10
5秒前
沉静问芙完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
HHW完成签到 ,获得积分10
10秒前
11秒前
lamer完成签到,获得积分10
12秒前
12秒前
devilito完成签到,获得积分10
13秒前
xun发布了新的文献求助10
16秒前
优秀棒棒糖完成签到 ,获得积分10
18秒前
然来溪完成签到 ,获得积分10
19秒前
23秒前
qianci2009完成签到,获得积分0
24秒前
sadh2完成签到 ,获得积分10
24秒前
xun完成签到,获得积分20
24秒前
24秒前
27秒前
崔灿完成签到 ,获得积分10
27秒前
含蓄的魔镜完成签到 ,获得积分10
28秒前
hhh2018687完成签到,获得积分10
28秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
luffy完成签到 ,获得积分10
32秒前
jjjjjj发布了新的文献求助30
32秒前
federish完成签到 ,获得积分10
37秒前
健脊护柱完成签到 ,获得积分10
40秒前
蓝莓芝士完成签到 ,获得积分10
41秒前
Yuki完成签到 ,获得积分10
43秒前
grace完成签到 ,获得积分10
43秒前
Skyllne完成签到 ,获得积分10
44秒前
LONG完成签到 ,获得积分10
45秒前
LJ_2完成签到 ,获得积分10
46秒前
xue完成签到 ,获得积分10
47秒前
wangsiyuan发布了新的文献求助10
48秒前
jjjjjj完成签到,获得积分10
49秒前
嗡嗡嗡完成签到 ,获得积分10
50秒前
白华苍松发布了新的文献求助20
51秒前
观妙散人完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
56秒前
巫巫巫巫巫完成签到 ,获得积分0
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516426
求助须知:如何正确求助?哪些是违规求助? 4609379
关于积分的说明 14514873
捐赠科研通 4546050
什么是DOI,文献DOI怎么找? 2491063
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444767