Solving the Multi-robot task allocation with functional tasks based on a hyper-heuristic algorithm

计算机科学 任务(项目管理) 启发式 机器人 人工智能 数学优化 数学 经济 管理
作者
Fuhan Yan,Kai Di
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110628-110628 被引量:7
标识
DOI:10.1016/j.asoc.2023.110628
摘要

Multi-robot task allocation (MRTA) problem is a classical problem in multi-robot systems. The most common assumption in MRTA is that all the tasks need to be completed with the time cost as small as possible. It is worth noting that some tasks may be optional in some real-world situations, i.e., the robots do not necessarily need to complete all tasks. These optional tasks do not limit the achievement of the goal, but the completion of these tasks will lead to some functional effects (e.g., making other tasks easier to be completed). Therefore, these optional tasks can be called "functional task". Different from functional tasks, if a task must be completed, this task can be called "compulsory task". In this paper, we study the problem where the robots need to minimize the time cost of completing all compulsory tasks and can selectively complete some functional tasks. The existence of the functional tasks greatly increases the solution space of MRTA, because the functional tasks should be firstly suitably selected and then suitably allocated. Existing related algorithms are usually based on the assumption that all tasks must be allocated. Thus, these algorithms cannot suitably deal with functional tasks. We analyze the characteristics of this problem and present a new hyper-heuristic algorithm. The low-level heuristic (LLH) in hyper-heuristic is designed to score the functional tasks by using influence diffusion model. The high-level strategy (HLS) seeks the optimal values of the key parameters in the influence diffusion model based on particle swarm optimization (PSO). Extensive simulated experiments are presented to comprehensively analyze the proposed algorithm. The proposed hyper-heuristic is compared with greedy algorithm and two meta-heuristic algorithms. Based on the simulated data, it is known that the hyper-heuristic algorithm can outperform the benchmark algorithms especially when the number of functional tasks is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
万能图书馆应助dodo2hu采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助MOF采纳,获得10
4秒前
wangshui发布了新的文献求助30
6秒前
言余完成签到,获得积分10
8秒前
haveatry发布了新的文献求助10
9秒前
幽默的惮发布了新的文献求助30
15秒前
英俊的铭应助江小白采纳,获得10
22秒前
hawaii66完成签到,获得积分10
22秒前
赘婿应助nml采纳,获得10
25秒前
25秒前
小二郎应助LL采纳,获得10
25秒前
renjianbaiye完成签到,获得积分10
26秒前
dodo2hu发布了新的文献求助10
28秒前
30秒前
34秒前
Boyce完成签到,获得积分10
34秒前
35秒前
35秒前
grammays发布了新的文献求助10
36秒前
37秒前
LL发布了新的文献求助10
38秒前
我是老大应助Nollet采纳,获得10
38秒前
38秒前
nml发布了新的文献求助10
40秒前
xjw关闭了xjw文献求助
41秒前
彩虹猫完成签到 ,获得积分10
42秒前
42秒前
江小白发布了新的文献求助10
42秒前
44秒前
MOF发布了新的文献求助10
45秒前
传奇3应助开心千青采纳,获得10
47秒前
48秒前
陈海明完成签到,获得积分10
51秒前
情怀应助LZY采纳,获得10
53秒前
思源应助rr采纳,获得10
54秒前
pluto应助LLL采纳,获得10
55秒前
醉熏的月光l完成签到,获得积分10
1分钟前
cindy完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352562
求助须知:如何正确求助?哪些是违规求助? 2977604
关于积分的说明 8680602
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455863
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709