亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Solving the Multi-robot task allocation with functional tasks based on a hyper-heuristic algorithm

计算机科学 任务(项目管理) 启发式 机器人 人工智能 数学优化 数学 管理 经济
作者
Fuhan Yan,Kai Di
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110628-110628 被引量:7
标识
DOI:10.1016/j.asoc.2023.110628
摘要

Multi-robot task allocation (MRTA) problem is a classical problem in multi-robot systems. The most common assumption in MRTA is that all the tasks need to be completed with the time cost as small as possible. It is worth noting that some tasks may be optional in some real-world situations, i.e., the robots do not necessarily need to complete all tasks. These optional tasks do not limit the achievement of the goal, but the completion of these tasks will lead to some functional effects (e.g., making other tasks easier to be completed). Therefore, these optional tasks can be called "functional task". Different from functional tasks, if a task must be completed, this task can be called "compulsory task". In this paper, we study the problem where the robots need to minimize the time cost of completing all compulsory tasks and can selectively complete some functional tasks. The existence of the functional tasks greatly increases the solution space of MRTA, because the functional tasks should be firstly suitably selected and then suitably allocated. Existing related algorithms are usually based on the assumption that all tasks must be allocated. Thus, these algorithms cannot suitably deal with functional tasks. We analyze the characteristics of this problem and present a new hyper-heuristic algorithm. The low-level heuristic (LLH) in hyper-heuristic is designed to score the functional tasks by using influence diffusion model. The high-level strategy (HLS) seeks the optimal values of the key parameters in the influence diffusion model based on particle swarm optimization (PSO). Extensive simulated experiments are presented to comprehensively analyze the proposed algorithm. The proposed hyper-heuristic is compared with greedy algorithm and two meta-heuristic algorithms. Based on the simulated data, it is known that the hyper-heuristic algorithm can outperform the benchmark algorithms especially when the number of functional tasks is large.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
鸡狗不如完成签到,获得积分10
5秒前
10秒前
lkk发布了新的文献求助10
14秒前
16秒前
爆米花应助芜湖采纳,获得10
18秒前
赘婿应助懂事梨采纳,获得10
18秒前
18秒前
YANG发布了新的文献求助10
20秒前
23秒前
lkk完成签到,获得积分20
24秒前
joeandrows发布了新的文献求助10
41秒前
50秒前
懂事梨完成签到,获得积分20
52秒前
懂事梨发布了新的文献求助10
56秒前
直率的笑翠完成签到 ,获得积分10
56秒前
小马甲应助joeandrows采纳,获得10
1分钟前
深情安青应助懂事梨采纳,获得10
1分钟前
Bouchet关注了科研通微信公众号
1分钟前
1分钟前
可靠松鼠发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jane发布了新的文献求助10
1分钟前
Bouchet发布了新的文献求助10
1分钟前
我是老大应助可靠松鼠采纳,获得10
1分钟前
1分钟前
张贵虎发布了新的文献求助10
1分钟前
小洛完成签到 ,获得积分10
2分钟前
ZHH完成签到,获得积分10
2分钟前
2分钟前
和风完成签到 ,获得积分10
2分钟前
颠覆乾坤发布了新的文献求助10
2分钟前
2分钟前
如意的易绿完成签到,获得积分10
2分钟前
Alexis2047发布了新的文献求助10
2分钟前
颠覆乾坤完成签到,获得积分10
2分钟前
共享精神应助凉凉采纳,获得10
2分钟前
2分钟前
麻辣小龙虾完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064209
求助须知:如何正确求助?哪些是违规求助? 4287442
关于积分的说明 13358985
捐赠科研通 4105809
什么是DOI,文献DOI怎么找? 2248265
邀请新用户注册赠送积分活动 1253799
关于科研通互助平台的介绍 1185079