亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images

胶囊内镜 人工智能 卷积神经网络 深度学习 结肠镜检查 计算机科学 试验装置 医学 人工神经网络 机器学习 模式识别(心理学) 放射科 内科学 结直肠癌 癌症
作者
Anju Sharma,Rajnish Kumar,Prabha Garg
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:177: 105142-105142 被引量:10
标识
DOI:10.1016/j.ijmedinf.2023.105142
摘要

Gastrointestinal (GI) infections are quite common today around the world. Colonoscopy or wireless capsule endoscopy (WCE) are noninvasive methods for examining the whole GI tract for abnormalities. Nevertheless, it requires a great deal of time and effort for doctors to visualize a large number of images, and diagnosis is prone to human error. As a result, developing automated artificial intelligence (AI) based GI disease diagnosis methods is a crucial and emerging research area. AI-based prediction models may lead to improvements in the early diagnosis of gastrointestinal disorders, assessing severity, and healthcare systems for the benefit of patients as well as clinicians. The focus of this research is on the early diagnosis of gastrointestinal diseases using a convolution neural network (CNN) to enhance diagnosis accuracy. Various CNN models (baseline model and using transfer learning (VGG16, InceptionV3, and ResNet50)) were trained on a benchmark image dataset, KVASIR, containing images from inside the GI tract using n-fold cross-validation. The dataset comprises images of three disease states—polyps, ulcerative colitis, and esophagitis—as well as images of the healthy colon. Data augmentation strategies together with statistical measures were used to improve and evaluate the model's performance. Additionally, the test set comprising 1200 images was used to evaluate the model's accuracy and robustness. The CNN model using the weights of the ResNet50 pre-trained model achieved the highest average accuracy of approximately 99.80% on the training set (100% precision and approximately 99% recall) and accuracies of 99.50% and 99.16% on the validation and additional test set, respectively, while diagnosing GI diseases. When compared to other existing systems, the proposed ResNet50 model outperforms them all. The findings of this study indicate that AI-based prediction models using CNNs, specifically ResNet50, can improve diagnostic accuracy for detecting gastrointestinal polyps, ulcerative colitis, and esophagitis. The prediction model is available at https://github.com/anjus02/GI-disease-classification.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助鲨猫收藏家采纳,获得10
5秒前
Owen应助dart1023采纳,获得10
5秒前
饭团不吃鱼完成签到,获得积分10
7秒前
8秒前
TT发布了新的文献求助10
13秒前
陆上飞完成签到,获得积分10
15秒前
喵喵完成签到 ,获得积分10
17秒前
鲨猫收藏家完成签到,获得积分10
24秒前
25秒前
25秒前
28秒前
29秒前
36秒前
海边的卡夫卡完成签到,获得积分10
38秒前
YXH发布了新的文献求助10
42秒前
caca完成签到,获得积分10
59秒前
59秒前
1分钟前
汉堡包应助环戊烷采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得30
1分钟前
嗯哼应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
HS完成签到,获得积分10
1分钟前
1分钟前
1分钟前
可爱的函函应助YXH采纳,获得10
1分钟前
1分钟前
nagisa发布了新的文献求助10
1分钟前
1分钟前
1分钟前
nagisa发布了新的文献求助10
1分钟前
nagisa发布了新的文献求助10
1分钟前
2分钟前
nagisa发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ppppppp_76完成签到 ,获得积分10
2分钟前
嗯哼应助科研通管家采纳,获得20
3分钟前
嗯哼应助科研通管家采纳,获得20
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353475
求助须知:如何正确求助?哪些是违规求助? 2978125
关于积分的说明 8683663
捐赠科研通 2659454
什么是DOI,文献DOI怎么找? 1456252
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020