Ultrafast interfacial charge transfer and superior photoelectric conversion properties in one-dimensional Janus-MoSSe/ WSe2 van der Waals heterostructures

电负性 异质结 光电效应 杰纳斯 材料科学 范德瓦尔斯力 能量转换效率 凝聚态物理 物理 纳米技术 光电子学 量子力学 分子
作者
Biao Cai,Jianing Tan,Long Zhang,Degao Xu,Jiansheng Dong,Gang Ouyang
出处
期刊:Physical review 卷期号:108 (4) 被引量:7
标识
DOI:10.1103/physrevb.108.045416
摘要

One-dimensional (1D) van der Waals (vdW) heterostructures have attracted great attention due to their excellent photoelectric properties which potentially serve as key components for next-generation optoelectronic devices. However, investigations on the photoelectric conversion properties in 1D vdW heterostructures are still in the rudimentary stage. Addressing the mechanism of the role of flexoelectricity in nanotubes and electronegativity difference of Janus materials on photoelectric properties remains challenging. In this paper, we investigate the flexoelectric effect and electronegativity difference on the photoelectric properties of 1D Janus-MoSSe/${\mathrm{WSe}}_{2}$ vdW heterostructures and assess their potential for solar cells through the atomic-bond-relaxation approach combined with ab initio nonadiabatic molecular dynamics simulations. We find that a 1D MoSSe/${\mathrm{WSe}}_{2}$ vdW heterostructure with $\mathit{AB}1$ stacking configuration exhibits ultrafast interfacial charge transfer and superior photoelectric conversion properties owing to the beneficial effects of flexoelectricity and electronegativity difference. Specifically, the photogenerated electron (hole) transfer in the 1D MoSSe/${\mathrm{WSe}}_{2}$ system occurs quickly, within 55 (17) fs. Moreover, the optimal power conversion efficiency of 1D MoSSe/${\mathrm{WSe}}_{2}$ vdW heterostructure-based solar cells can reach up to 6.25%, which is significantly higher than those of 1D ${\mathrm{MoS}}_{2}/{\mathrm{WSe}}_{2}$ (5.45%) and 2D MoSSe/${\mathrm{WSe}}_{2}$ (1.94%). In this paper, we provide an effective strategy for the development of high-efficiency solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
妮儿发布了新的文献求助10
1秒前
1秒前
MADKAI发布了新的文献求助10
2秒前
insane完成签到,获得积分10
2秒前
云儿发布了新的文献求助20
2秒前
Jasper应助哲999采纳,获得10
2秒前
wanci应助拟拟采纳,获得10
3秒前
王超超完成签到,获得积分10
3秒前
3秒前
圈圈发布了新的文献求助10
4秒前
狼来了aas完成签到,获得积分10
4秒前
4秒前
大胆的莛发布了新的文献求助10
5秒前
文静的信封完成签到,获得积分10
5秒前
CipherSage应助wu采纳,获得10
5秒前
科目三应助震666采纳,获得30
5秒前
April发布了新的文献求助10
6秒前
加菲丰丰应助猫橘汽水采纳,获得30
6秒前
阳光海云完成签到,获得积分10
6秒前
7秒前
攒一口袋星星完成签到,获得积分10
7秒前
alwry完成签到,获得积分10
7秒前
eyebrow完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
小胖鱼完成签到,获得积分20
8秒前
Grayball应助啊这啥啊这是采纳,获得10
9秒前
cf完成签到,获得积分10
9秒前
王一线完成签到,获得积分10
10秒前
10秒前
10秒前
栗子完成签到,获得积分10
10秒前
bkagyin应助格格星采纳,获得10
11秒前
Youdge完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740