Improvement and application of UNet network for avoiding the effect of urban dense high-rise buildings and other feature shadows on water body extraction

计算机科学 人工智能 规范化(社会学) 分割 特征提取 模式识别(心理学) 人工神经网络 卷积神经网络 特征(语言学) 语言学 哲学 社会学 人类学
作者
Yiheng Xie,Renxi Chen,Mingge Yu,Xiaoping Rui,Xiaomin Du
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (12): 3861-3891 被引量:6
标识
DOI:10.1080/01431161.2023.2229498
摘要

ABSTRACTFinding a means to extract water body information efficiently and accurately from high-resolution remote sensing images has been an important research direction in the field of water body extraction in recent years. However, shadows from buildings and other obstacles interfere with the accuracy of water body extraction. To address this problem, this paper proposes a neural network method incorporating an attention mechanism for water body extraction. This paper is based on the U-Net convolutional neural network and adds the squeeze-and-excitation module of SENet, an attention mechanism, to the downsampling process of the U-Net network. The module weights the feature maps so that the network focuses more on the features of the water body information and thus reduces attention to the shadow features from buildings and other features, thus improving the accuracy of image segmentation. The dropout and batch normalization layers are also added to improve the generalization ability and stability of the model. In this paper, a water extraction network SE-CU-Net model is presented to overcome the shadowing effect from buildings and other features. Using GF-2 images of Jiangsu province as the data source, the recognition results of this paper are compared with Dense-Net, Res-Net, Seg-Net, U-net, SVM, and RF. Through the comparison experiments, the model of this paper can not only better overcome the influence of shadows from buildings and other features, but it also has a stronger recognition ability and recognition effect. The average ASCR, Precision, mIoU, OA, F1-Score and kappa coefficients in the three tested areas reached 98.27%, 97.17%, 89.33%, 98.2%, 89.3% and 0.883, respectively, with significantly higher accuracy than the other six classical methods, verifying the effectiveness of the model in overcoming the influence of shadows from buildings and other features in water body extraction research.KEYWORDS: water extractiondeep learningshadows of buildingsU-Netattention mechanism Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was Funded by Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People's Republic of China(Grant No. KLSMNR-G202212)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜瓜发布了新的文献求助10
1秒前
科研小白发布了新的文献求助10
1秒前
2秒前
迅速的甜瓜完成签到 ,获得积分20
2秒前
meng发布了新的文献求助10
3秒前
轻松盼雁发布了新的文献求助10
3秒前
共享精神应助ye采纳,获得30
3秒前
4秒前
彭于晏应助好名字采纳,获得10
4秒前
师国瑞完成签到,获得积分10
5秒前
852应助laiwei采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
如意的乐天应助非要起名采纳,获得10
7秒前
Vv完成签到 ,获得积分10
7秒前
连衣裙完成签到,获得积分10
8秒前
bb发布了新的文献求助10
9秒前
小杭杭弟完成签到,获得积分10
10秒前
彭于晏应助没有熬夜采纳,获得10
10秒前
11秒前
lv完成签到,获得积分10
11秒前
12秒前
一一发布了新的文献求助10
12秒前
12秒前
13秒前
MarvelerYB3完成签到,获得积分10
13秒前
13秒前
张佳铭完成签到,获得积分10
13秒前
meng完成签到,获得积分10
13秒前
13秒前
14秒前
归尘发布了新的文献求助10
14秒前
灯鸣乃月见完成签到,获得积分20
14秒前
思源应助FOLLOW采纳,获得10
14秒前
科目三应助科研小白采纳,获得10
15秒前
16秒前
专注的猫咪完成签到,获得积分10
16秒前
张佳铭发布了新的文献求助10
16秒前
17秒前
大模型应助非要起名采纳,获得10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726