亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improvement and application of UNet network for avoiding the effect of urban dense high-rise buildings and other feature shadows on water body extraction

计算机科学 人工智能 规范化(社会学) 分割 特征提取 模式识别(心理学) 人工神经网络 卷积神经网络 特征(语言学) 人类学 语言学 哲学 社会学
作者
Yiheng Xie,Renxi Chen,Mingge Yu,Xiaoping Rui,Xiaomin Du
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (12): 3861-3891 被引量:6
标识
DOI:10.1080/01431161.2023.2229498
摘要

ABSTRACTFinding a means to extract water body information efficiently and accurately from high-resolution remote sensing images has been an important research direction in the field of water body extraction in recent years. However, shadows from buildings and other obstacles interfere with the accuracy of water body extraction. To address this problem, this paper proposes a neural network method incorporating an attention mechanism for water body extraction. This paper is based on the U-Net convolutional neural network and adds the squeeze-and-excitation module of SENet, an attention mechanism, to the downsampling process of the U-Net network. The module weights the feature maps so that the network focuses more on the features of the water body information and thus reduces attention to the shadow features from buildings and other features, thus improving the accuracy of image segmentation. The dropout and batch normalization layers are also added to improve the generalization ability and stability of the model. In this paper, a water extraction network SE-CU-Net model is presented to overcome the shadowing effect from buildings and other features. Using GF-2 images of Jiangsu province as the data source, the recognition results of this paper are compared with Dense-Net, Res-Net, Seg-Net, U-net, SVM, and RF. Through the comparison experiments, the model of this paper can not only better overcome the influence of shadows from buildings and other features, but it also has a stronger recognition ability and recognition effect. The average ASCR, Precision, mIoU, OA, F1-Score and kappa coefficients in the three tested areas reached 98.27%, 97.17%, 89.33%, 98.2%, 89.3% and 0.883, respectively, with significantly higher accuracy than the other six classical methods, verifying the effectiveness of the model in overcoming the influence of shadows from buildings and other features in water body extraction research.KEYWORDS: water extractiondeep learningshadows of buildingsU-Netattention mechanism Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was Funded by Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People's Republic of China(Grant No. KLSMNR-G202212)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
離原完成签到,获得积分10
1秒前
4秒前
14秒前
15秒前
Djnsbj完成签到,获得积分20
16秒前
19秒前
秋分发布了新的文献求助10
20秒前
荷兰香猪完成签到,获得积分10
24秒前
早起先喝一碗粥完成签到,获得积分10
27秒前
33秒前
34秒前
KaK完成签到,获得积分10
37秒前
芝士雪豹完成签到,获得积分10
39秒前
芝士雪豹发布了新的文献求助10
42秒前
konosuba完成签到,获得积分0
45秒前
满意的伊完成签到,获得积分10
48秒前
旨酒欣欣应助令宏采纳,获得30
56秒前
可达鸭完成签到 ,获得积分10
56秒前
小耗子完成签到,获得积分10
56秒前
77完成签到 ,获得积分10
57秒前
秋分发布了新的文献求助30
1分钟前
烟火岸上完成签到,获得积分10
1分钟前
LJL完成签到 ,获得积分10
1分钟前
1分钟前
知足的憨人丫丫完成签到,获得积分10
1分钟前
1分钟前
秋分完成签到,获得积分10
1分钟前
ziyewutong完成签到,获得积分10
1分钟前
葛怀锐完成签到 ,获得积分10
1分钟前
知足的憨人*-*完成签到,获得积分10
1分钟前
夏宇航完成签到,获得积分10
1分钟前
深情安青应助西格玛采纳,获得30
1分钟前
yyyalles发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
森sen完成签到 ,获得积分10
2分钟前
夏宇航关注了科研通微信公众号
2分钟前
锦慜完成签到 ,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965570
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155342
捐赠科研通 3245324
什么是DOI,文献DOI怎么找? 1792823
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176