Courier Dispatch in On-Demand Delivery

联营 服务(商务) 计算机科学 利用 运筹学 微观经济学 经济 业务 营销 数学 计算机安全 人工智能
作者
Mingliu Chen,Ming Hu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (6): 3789-3807 被引量:36
标识
DOI:10.1287/mnsc.2023.4858
摘要

We study a courier dispatching problem in an on-demand delivery system in which customers are sensitive to delay. Specifically, we evaluate the effect of temporal pooling by comparing systems using the dedicated strategy, with which only one order is delivered per trip, versus the pooling strategy, with which a batch of consecutive orders is delivered on each trip. We capture the courier delivery system’s spatial dimension by assuming that, following a Poisson process, demand arises at a uniformly generated point within a service region. With the same objective of revenue maximization, we find that the dispatching strategy depends critically on customers’ patience level, the size of the service region, and whether the firm can endogenize the demand. We obtain concise but informative results with a single courier and assuming that customers’ underlying arrival rate is large enough, meaning a crowded market, such as rush hour delivery. In particular, when the firm has a growth target and needs to achieve an exogenously given demand rate, using the pooling strategy is optimal if the service area is large enough to fully exploit the pooling efficiency in delivery. Otherwise, using the dedicated strategy is optimal. In contrast, if the firm can endogenize the demand rate by varying the delivery fee, using the dedicated strategy is optimal for a large service area. The reason is that it is optimal for the firm to sustain a relatively low demand rate by charging a high fee for a large service radius: within this large area, the pooling strategy leads to a long wait because it takes a long time for multiple orders to accumulate. Moreover, with an exogenous demand rate to meet, customers’ patience level has no impact on the dispatch strategy. However, when the demand rate can be endogenized, the dedicated strategy is preferable if customers are impatient. Furthermore, we extend our model to account for social welfare maximization, a hybrid contingent delivery policy, a general arrival rate that does not have to be large, a nonuniform distribution of orders in the service region, and multiple couriers. We also conduct numerical analysis and simulations to complement our main results and find that most insights in our base model still hold in these extensions and numerical studies. This paper was accepted by Jeannette Song, operations management. Funding: This work was supported by the Natural Sciences and Engineering Research Council of Canada [Grants RGPIN-2015-06757 and RGPIN-2021-04295]. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4858 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助羊肉泡馍采纳,获得10
1秒前
1秒前
2秒前
2秒前
JamesPei应助D&L采纳,获得10
2秒前
2秒前
4秒前
香蕉觅云应助SHADY592采纳,获得10
5秒前
喜悦代双完成签到,获得积分10
5秒前
5秒前
6秒前
陆拾荒发布了新的文献求助10
6秒前
旺旺完成签到,获得积分10
7秒前
坦率灵槐应助纪汶欣采纳,获得20
7秒前
奋斗刚发布了新的文献求助10
7秒前
sincere-辉发布了新的文献求助10
8秒前
9秒前
10秒前
Owen应助lilili采纳,获得10
10秒前
10秒前
10秒前
非了个凡完成签到 ,获得积分10
11秒前
YEGE发布了新的文献求助10
11秒前
王威完成签到,获得积分10
12秒前
华仔应助不见木棉采纳,获得10
12秒前
12秒前
pp发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
今后应助卡萨丁那看啥采纳,获得10
14秒前
aben050361发布了新的文献求助10
15秒前
乐乐应助番茄鱼采纳,获得10
15秒前
大方的黄豆完成签到,获得积分10
15秒前
Lucas应助胖虎采纳,获得10
15秒前
陆拾荒完成签到,获得积分10
15秒前
D&L发布了新的文献求助10
15秒前
16秒前
16秒前
赘婿应助zhengzhao采纳,获得10
17秒前
研友_VZG7GZ应助曾经耳机采纳,获得10
19秒前
mystar发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538