Pattern Recognition of Distributed Optical Fiber Vibration Sensors Based on Resnet 152

短时傅里叶变换 模式识别(心理学) 卷积神经网络 计算机科学 信号(编程语言) 特征(语言学) 时域 特征提取 分割 假警报 傅里叶变换 计算机视觉 人工智能 数学 数学分析 傅里叶分析 语言学 哲学 程序设计语言
作者
Xibo Jin,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Xinxin Hu,Yuelang Huang,Dongqi Zhang,Sichen Li,Kang Xue,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19717-19725 被引量:11
标识
DOI:10.1109/jsen.2023.3295948
摘要

In recent years, traditional perimeter security system is gradually replaced by optical fiber distributed vibration sensing system, as it has superior advantages such as high sensitivity, fast response, and simple structure. However, it is still challenging to accurately realize multievent pattern recognition in practical applications. Accurate pattern recognition can reduce the false alarm rate and significantly increase the stability of the optical fiber system. In this article, we proposed a pattern recognition approach based on short-time Fourier transform (STFT) and Resnet 152-based neural network. First, the vibration signal containing high-frequency information was extracted through a median filter. Second, STFT was used to convert a 1-D time-domain signal to a 2-D time–frequency signal. The feature dimension of optical signals was expanded. Third, the redundant information would be removed by dividing the high-, medium-, and low-energy segments. Finally, the preprocessed optical signals were sent to Resnet 152 convolutional neural network (CNN) model for pattern recognition. To verify the effectiveness of the proposed scheme, field tests with nine sensing events (climbing, crashing, cutting, kicking, knocking hard, knocking lightly, no intrusion, pulling, and waggling) have been experimentally carried out. It is demonstrated that the average recognition accuracy of the nine common sensing events is 96.67%, and the detection time is 0.2391 s. The feasibility of deep CNN in solving pattern recognition has been proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助566采纳,获得10
刚刚
1秒前
希望天下0贩的0应助LucyLi采纳,获得10
1秒前
1秒前
Honahlee发布了新的文献求助10
1秒前
乱世发布了新的文献求助10
1秒前
li发布了新的文献求助10
1秒前
瑾年发布了新的文献求助10
2秒前
沉静白翠发布了新的文献求助10
2秒前
2秒前
小爱同学完成签到,获得积分10
2秒前
Lucas应助六七采纳,获得10
2秒前
queer完成签到,获得积分10
3秒前
3秒前
青藤完成签到,获得积分10
4秒前
烟里戏发布了新的文献求助30
4秒前
孤独惜海发布了新的文献求助10
4秒前
buno应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
6秒前
关添应助科研通管家采纳,获得20
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得100
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
阔达晓博完成签到,获得积分20
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
残剑月应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
buno应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836