亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pattern Recognition of Distributed Optical Fiber Vibration Sensors Based on Resnet 152

短时傅里叶变换 模式识别(心理学) 卷积神经网络 计算机科学 信号(编程语言) 特征(语言学) 时域 特征提取 分割 假警报 傅里叶变换 计算机视觉 人工智能 数学 数学分析 傅里叶分析 语言学 哲学 程序设计语言
作者
Xibo Jin,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Xinxin Hu,Yuelang Huang,Dongqi Zhang,Sichen Li,Kang Xue,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19717-19725 被引量:11
标识
DOI:10.1109/jsen.2023.3295948
摘要

In recent years, traditional perimeter security system is gradually replaced by optical fiber distributed vibration sensing system, as it has superior advantages such as high sensitivity, fast response, and simple structure. However, it is still challenging to accurately realize multievent pattern recognition in practical applications. Accurate pattern recognition can reduce the false alarm rate and significantly increase the stability of the optical fiber system. In this article, we proposed a pattern recognition approach based on short-time Fourier transform (STFT) and Resnet 152-based neural network. First, the vibration signal containing high-frequency information was extracted through a median filter. Second, STFT was used to convert a 1-D time-domain signal to a 2-D time–frequency signal. The feature dimension of optical signals was expanded. Third, the redundant information would be removed by dividing the high-, medium-, and low-energy segments. Finally, the preprocessed optical signals were sent to Resnet 152 convolutional neural network (CNN) model for pattern recognition. To verify the effectiveness of the proposed scheme, field tests with nine sensing events (climbing, crashing, cutting, kicking, knocking hard, knocking lightly, no intrusion, pulling, and waggling) have been experimentally carried out. It is demonstrated that the average recognition accuracy of the nine common sensing events is 96.67%, and the detection time is 0.2391 s. The feasibility of deep CNN in solving pattern recognition has been proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
果果发布了新的文献求助10
4秒前
Haoru应助Captain采纳,获得30
4秒前
酷波er应助遇晚采纳,获得10
7秒前
夜夏完成签到,获得积分10
15秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
20秒前
绝望的大学生完成签到,获得积分20
20秒前
22秒前
boom完成签到 ,获得积分10
24秒前
25秒前
wwww完成签到 ,获得积分0
25秒前
25秒前
cwj完成签到,获得积分10
26秒前
Vince发布了新的文献求助10
29秒前
wangran_778发布了新的文献求助10
31秒前
37秒前
doctor_quyi发布了新的文献求助10
40秒前
wangran_778完成签到,获得积分10
42秒前
44秒前
45秒前
李义志完成签到,获得积分10
48秒前
48秒前
佳佳发布了新的文献求助10
48秒前
啊哦发布了新的文献求助30
49秒前
今后应助李义志采纳,获得10
51秒前
科研通AI6应助黄黄黄采纳,获得10
51秒前
无极微光应助缓慢的藏鸟采纳,获得20
52秒前
贱小贱完成签到,获得积分10
52秒前
ZYP发布了新的文献求助10
55秒前
科研狗完成签到 ,获得积分10
56秒前
无花果应助好了没了采纳,获得10
56秒前
科研通AI6应助啊哦采纳,获得30
1分钟前
黎娅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
好了没了完成签到,获得积分10
1分钟前
挚智完成签到 ,获得积分10
1分钟前
1分钟前
好了没了发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264