Pattern Recognition of Distributed Optical Fiber Vibration Sensors Based on Resnet 152

短时傅里叶变换 模式识别(心理学) 卷积神经网络 计算机科学 信号(编程语言) 特征(语言学) 时域 特征提取 分割 假警报 傅里叶变换 计算机视觉 人工智能 数学 数学分析 傅里叶分析 语言学 哲学 程序设计语言
作者
Xibo Jin,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Xinxin Hu,Yuelang Huang,Dongqi Zhang,Sichen Li,Kang Xue,Tiegen Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 19717-19725 被引量:3
标识
DOI:10.1109/jsen.2023.3295948
摘要

In recent years, traditional perimeter security system is gradually replaced by optical fiber distributed vibration sensing system, as it has superior advantages such as high sensitivity, fast response, and simple structure. However, it is still challenging to accurately realize multievent pattern recognition in practical applications. Accurate pattern recognition can reduce the false alarm rate and significantly increase the stability of the optical fiber system. In this article, we proposed a pattern recognition approach based on short-time Fourier transform (STFT) and Resnet 152-based neural network. First, the vibration signal containing high-frequency information was extracted through a median filter. Second, STFT was used to convert a 1-D time-domain signal to a 2-D time–frequency signal. The feature dimension of optical signals was expanded. Third, the redundant information would be removed by dividing the high-, medium-, and low-energy segments. Finally, the preprocessed optical signals were sent to Resnet 152 convolutional neural network (CNN) model for pattern recognition. To verify the effectiveness of the proposed scheme, field tests with nine sensing events (climbing, crashing, cutting, kicking, knocking hard, knocking lightly, no intrusion, pulling, and waggling) have been experimentally carried out. It is demonstrated that the average recognition accuracy of the nine common sensing events is 96.67%, and the detection time is 0.2391 s. The feasibility of deep CNN in solving pattern recognition has been proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KT发布了新的文献求助10
刚刚
Qzy完成签到,获得积分10
1秒前
kinase完成签到 ,获得积分10
1秒前
2秒前
21完成签到,获得积分10
2秒前
Miyya完成签到 ,获得积分10
2秒前
勤奋幻天完成签到 ,获得积分10
3秒前
11秒前
13秒前
hitagi完成签到,获得积分10
14秒前
夏鹿发布了新的文献求助10
17秒前
勤恳慕蕊完成签到,获得积分10
18秒前
浊人发布了新的文献求助10
19秒前
可爱香槟发布了新的文献求助30
20秒前
思源应助KT采纳,获得10
21秒前
夏鹿完成签到,获得积分20
22秒前
英俊的铭应助德德采纳,获得100
26秒前
肥肠的枣糕啊完成签到,获得积分10
27秒前
精明芷巧完成签到 ,获得积分10
29秒前
29秒前
Zzoe_S发布了新的文献求助10
29秒前
Lucifer完成签到,获得积分10
31秒前
失眠的安卉完成签到,获得积分10
35秒前
KT完成签到,获得积分10
38秒前
38秒前
神勇的橘子完成签到 ,获得积分10
39秒前
40秒前
很多奶油完成签到 ,获得积分10
41秒前
star完成签到,获得积分10
41秒前
吐司匹林发布了新的文献求助10
43秒前
45秒前
OuO完成签到,获得积分10
45秒前
47秒前
科研通AI2S应助子民采纳,获得10
48秒前
可爱香槟完成签到,获得积分10
48秒前
隐形荟发布了新的文献求助10
50秒前
快乐小菜瓜完成签到 ,获得积分10
51秒前
濛嘻嘻完成签到,获得积分10
52秒前
跳跳糖完成签到 ,获得积分10
54秒前
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159813
求助须知:如何正确求助?哪些是违规求助? 2810709
关于积分的说明 7889177
捐赠科研通 2469823
什么是DOI,文献DOI怎么找? 1315112
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012