Pattern Recognition of Distributed Optical Fiber Vibration Sensors Based on Resnet 152

短时傅里叶变换 模式识别(心理学) 卷积神经网络 计算机科学 信号(编程语言) 特征(语言学) 时域 特征提取 分割 假警报 傅里叶变换 计算机视觉 人工智能 数学 数学分析 傅里叶分析 语言学 哲学 程序设计语言
作者
Xibo Jin,Kun Liu,Junfeng Jiang,Tianhua Xu,Zhenyang Ding,Xinxin Hu,Yuelang Huang,Dongqi Zhang,Sichen Li,Kang Xue,Tiegen Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (17): 19717-19725 被引量:3
标识
DOI:10.1109/jsen.2023.3295948
摘要

In recent years, traditional perimeter security system is gradually replaced by optical fiber distributed vibration sensing system, as it has superior advantages such as high sensitivity, fast response, and simple structure. However, it is still challenging to accurately realize multievent pattern recognition in practical applications. Accurate pattern recognition can reduce the false alarm rate and significantly increase the stability of the optical fiber system. In this article, we proposed a pattern recognition approach based on short-time Fourier transform (STFT) and Resnet 152-based neural network. First, the vibration signal containing high-frequency information was extracted through a median filter. Second, STFT was used to convert a 1-D time-domain signal to a 2-D time–frequency signal. The feature dimension of optical signals was expanded. Third, the redundant information would be removed by dividing the high-, medium-, and low-energy segments. Finally, the preprocessed optical signals were sent to Resnet 152 convolutional neural network (CNN) model for pattern recognition. To verify the effectiveness of the proposed scheme, field tests with nine sensing events (climbing, crashing, cutting, kicking, knocking hard, knocking lightly, no intrusion, pulling, and waggling) have been experimentally carried out. It is demonstrated that the average recognition accuracy of the nine common sensing events is 96.67%, and the detection time is 0.2391 s. The feasibility of deep CNN in solving pattern recognition has been proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎妙菡完成签到,获得积分10
2秒前
灵活的胖子wxp完成签到,获得积分10
2秒前
Omega完成签到,获得积分10
2秒前
小鹿斑比完成签到,获得积分10
3秒前
欢呼妙菱发布了新的文献求助10
3秒前
ash完成签到,获得积分10
4秒前
马伟杰发布了新的文献求助10
4秒前
Jasper应助一直向前采纳,获得10
5秒前
思源应助狂野忆文采纳,获得10
5秒前
大模型应助狂野忆文采纳,获得10
5秒前
科目三应助狂野忆文采纳,获得10
5秒前
酷波er应助狂野忆文采纳,获得10
5秒前
CipherSage应助狂野忆文采纳,获得10
5秒前
传奇3应助狂野忆文采纳,获得10
5秒前
斯文败类应助狂野忆文采纳,获得10
5秒前
爆米花应助狂野忆文采纳,获得10
5秒前
英姑应助狂野忆文采纳,获得10
6秒前
Hello应助狂野忆文采纳,获得10
6秒前
八月完成签到,获得积分10
6秒前
Man_proposes完成签到,获得积分10
6秒前
小佳完成签到,获得积分10
6秒前
学渣一枚完成签到,获得积分10
6秒前
6秒前
月半完成签到,获得积分10
7秒前
fys131415完成签到 ,获得积分10
7秒前
闪闪火车完成签到 ,获得积分10
7秒前
8秒前
jidou1011完成签到,获得积分10
8秒前
扁舟灬完成签到,获得积分10
8秒前
QZZ完成签到,获得积分10
8秒前
agnway完成签到,获得积分10
8秒前
9秒前
战战兢兢完成签到 ,获得积分10
9秒前
xuejie发布了新的文献求助30
9秒前
专一的傲白完成签到 ,获得积分10
9秒前
星辰大海应助miezhugong采纳,获得30
10秒前
zh完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
CodeCraft应助he采纳,获得10
10秒前
wisdom完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259