Extended Laplace approximation for self-exciting spatio-temporal models of count data

拉普拉斯法 计数数据 贝叶斯概率 计算机科学 泊松分布 拉普拉斯变换 算法 统计物理学 统计 数学 人工智能 物理 数学分析
作者
Nicholas J. Clark,Philip M. Dixon
出处
期刊:spatial statistics [Elsevier]
卷期号:56: 100762-100762
标识
DOI:10.1016/j.spasta.2023.100762
摘要

Self-exciting models are statistical models of count data where the probability of an event occurring is influenced by the history of the process. In particular, self-exciting spatio-temporal models allow for spatial dependence as well as temporal self-excitation. For large spatial or temporal regions, however, the model leads to an intractable likelihood. An increasingly common method for dealing with large spatio-temporal models is by using Laplace approximations (LA). This method is convenient as it can easily be applied and is quickly implemented. However, as we will demonstrate in this manuscript, when applied to self-exciting Poisson spatial–temporal models, Laplace Approximations result in a significant bias in estimating some parameters. Due to this bias, we propose using up to sixth-order corrections to the LA for fitting these models. We will demonstrate how to do this in a Bayesian setting for self-exciting spatio-temporal models. We will further show there is a limited parameter space where the extended LA method still has bias. In these uncommon instances we will demonstrate how a more computationally intensive fully Bayesian approach using the Stan software program is possible in those rare instances. The performance of the extended LA method is illustrated with both simulation and real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江桥发布了新的文献求助10
1秒前
丘比特应助LR123采纳,获得10
3秒前
潇洒的白昼完成签到,获得积分10
4秒前
Mintkarla完成签到,获得积分10
5秒前
隐形曼青应助五月拾旧采纳,获得10
6秒前
JamesPei应助baixue采纳,获得10
7秒前
森木发布了新的文献求助10
10秒前
亿点快乐完成签到 ,获得积分10
10秒前
彭于晏应助小禾采纳,获得10
10秒前
11秒前
完美世界应助听雨采纳,获得10
11秒前
五迟早完成签到,获得积分10
13秒前
一一完成签到,获得积分10
13秒前
14秒前
高院士完成签到,获得积分10
15秒前
16秒前
ssss完成签到,获得积分10
16秒前
17秒前
17秒前
香蕉觅云应助JHY采纳,获得10
17秒前
21秒前
22秒前
22秒前
23秒前
西瓜藤子发布了新的文献求助10
24秒前
momo完成签到,获得积分10
24秒前
baixue发布了新的文献求助10
25秒前
26秒前
听雨发布了新的文献求助10
27秒前
Wang完成签到 ,获得积分10
28秒前
快看小花123完成签到,获得积分10
29秒前
29秒前
小禾发布了新的文献求助10
30秒前
姜姜研完成签到 ,获得积分10
30秒前
31秒前
小二郎应助刻苦的小虾米采纳,获得10
32秒前
32秒前
kento发布了新的文献求助30
32秒前
fangfang完成签到,获得积分10
34秒前
35秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233285
求助须知:如何正确求助?哪些是违规求助? 2879856
关于积分的说明 8212977
捐赠科研通 2547323
什么是DOI,文献DOI怎么找? 1376744
科研通“疑难数据库(出版商)”最低求助积分说明 647692
邀请新用户注册赠送积分活动 623115