Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 因果推理 对偶(语法数字) 计量经济学 数学 机器学习 哲学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Wei Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助云_123采纳,获得10
1秒前
3秒前
mol发布了新的文献求助10
3秒前
4秒前
5秒前
JamesPei应助panda采纳,获得10
5秒前
5秒前
健忘的荔枝完成签到 ,获得积分10
5秒前
烟花应助小青柑采纳,获得10
6秒前
李繁蕊完成签到,获得积分10
6秒前
7秒前
隐形曼青应助白天亮采纳,获得10
8秒前
8秒前
2222完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
超级泽洋发布了新的文献求助10
9秒前
9秒前
10秒前
暴躁的咖啡完成签到,获得积分10
11秒前
六桃发布了新的文献求助10
11秒前
zorro3574发布了新的文献求助10
12秒前
里脊鱼关注了科研通微信公众号
12秒前
SciGPT应助AU采纳,获得10
13秒前
云_123发布了新的文献求助10
14秒前
明亮白凝完成签到,获得积分10
14秒前
小雅完成签到,获得积分10
15秒前
Jasper应助安小象采纳,获得10
15秒前
果蝇宝宝发布了新的文献求助10
15秒前
亿万男人的初恋完成签到,获得积分10
18秒前
18秒前
木偶发布了新的文献求助10
19秒前
务实曲奇发布了新的文献求助10
20秒前
清脆的如凡完成签到 ,获得积分10
20秒前
大模型应助无情的聋五采纳,获得10
20秒前
21秒前
科研通AI2S应助化石吟采纳,获得10
21秒前
帅气的马里奥完成签到 ,获得积分10
22秒前
善学以致用应助FG采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141416
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802733
捐赠科研通 2448629
什么是DOI,文献DOI怎么找? 1302677
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237