Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 因果推理 对偶(语法数字) 计量经济学 数学 机器学习 哲学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Wei Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SherlockJia发布了新的文献求助10
1秒前
1秒前
纯真保温杯完成签到 ,获得积分10
2秒前
善良梦竹完成签到 ,获得积分10
2秒前
ehsl完成签到,获得积分10
2秒前
LC2228发布了新的文献求助10
2秒前
4秒前
细心的逍遥完成签到,获得积分10
4秒前
doctor葱完成签到,获得积分10
4秒前
可爱的安萱完成签到,获得积分10
4秒前
4秒前
非言墨语完成签到,获得积分10
4秒前
慕青应助malele采纳,获得10
5秒前
小马甲应助锅包肉采纳,获得10
5秒前
5秒前
静jj发布了新的文献求助10
6秒前
chuhuibaba完成签到,获得积分20
6秒前
千空完成签到,获得积分10
6秒前
7秒前
5123发布了新的文献求助10
7秒前
令狐晓博完成签到,获得积分0
7秒前
haki完成签到,获得积分10
8秒前
8秒前
重要问筠完成签到,获得积分10
8秒前
AronHUANG完成签到,获得积分10
8秒前
for_abSCI完成签到,获得积分10
9秒前
健壮的凝冬完成签到 ,获得积分10
9秒前
10秒前
香蕉觅云应助拌拌采纳,获得10
10秒前
Ding应助维时采纳,获得10
10秒前
千空发布了新的文献求助10
11秒前
怕孤单的若颜完成签到,获得积分10
11秒前
11秒前
12秒前
15297657686完成签到,获得积分10
12秒前
Max完成签到,获得积分10
13秒前
SherlockJia完成签到,获得积分10
13秒前
callmecjh完成签到,获得积分10
14秒前
5123完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044