Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 因果推理 对偶(语法数字) 计量经济学 数学 机器学习 哲学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Wei Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白蕲发布了新的文献求助10
刚刚
cindy发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
笑笑完成签到,获得积分10
2秒前
3秒前
默默的芙完成签到,获得积分10
3秒前
xm发布了新的文献求助10
3秒前
3秒前
4秒前
陈佳琪完成签到,获得积分10
4秒前
LU完成签到,获得积分10
4秒前
4秒前
4秒前
lwei发布了新的文献求助10
4秒前
设计狂魔应助九川采纳,获得30
4秒前
LiShin发布了新的文献求助10
5秒前
song完成签到,获得积分10
6秒前
Phoebe1996发布了新的文献求助10
6秒前
yannis2020发布了新的文献求助10
6秒前
小猴发布了新的文献求助10
7秒前
酷酷的老太完成签到 ,获得积分20
7秒前
7秒前
锣大炮完成签到,获得积分10
8秒前
maqin完成签到,获得积分10
8秒前
小王完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
科研通AI2S应助lwei采纳,获得10
8秒前
幽默的念双完成签到,获得积分10
8秒前
正直冰露发布了新的文献求助10
9秒前
标致小伙发布了新的文献求助10
9秒前
9秒前
pinkdon完成签到,获得积分10
9秒前
5477完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762