Granger Causal Inference Based on Dual Laplacian Distribution and Its Application to MI-BCI Classification

人工智能 计算机科学 推论 模式识别(心理学) 因果推理 对偶(语法数字) 计量经济学 数学 机器学习 哲学 语言学
作者
Peiyang Li,Xiaohui Gao,Cunbo Li,Chanlin Yi,Wei Huang,Yajing Si,Fali Li,Zehong Cao,Yin Tian,Peng Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tnnls.2023.3292179
摘要

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gelinhao完成签到,获得积分0
2秒前
量子星尘发布了新的文献求助10
2秒前
ssy发布了新的文献求助10
3秒前
鱼尾猫完成签到,获得积分10
3秒前
魏一一完成签到,获得积分10
4秒前
孙浩完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
PengLin完成签到 ,获得积分10
5秒前
6秒前
大模型应助Morem采纳,获得10
8秒前
zengyan发布了新的文献求助10
8秒前
DijiaXu应助彤光赫显采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
zyd完成签到,获得积分10
14秒前
14秒前
15秒前
mairipaiti发布了新的文献求助10
15秒前
xjcy应助科研通管家采纳,获得10
16秒前
yyyfff应助科研通管家采纳,获得10
16秒前
xjcy应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
自有龙骧完成签到 ,获得积分10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
xjcy应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
xjcy应助科研通管家采纳,获得10
17秒前
gggg应助热心的笑天采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
小邸应助科研通管家采纳,获得20
17秒前
无花果应助科研通管家采纳,获得10
17秒前
xjcy应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176