亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Graph Representation Learning for Next POI Recommendation

计算机科学 特征学习 杠杆(统计) 图形 理论计算机科学 适应性 机器学习 人工智能 数据挖掘 生态学 生物
作者
Zhaobo Wang,Yanmin Zhu,Chunyang Wang,Wenze Ma,Bo Li,Jiadi Yu
标识
DOI:10.1145/3539618.3591634
摘要

Next Point-of-Interest (POI) recommendation is an essential part of the flourishing location-based applications, where the demands of users are not only conditioned by their recent check-in behaviors but also by the critical influence stemming from geographical dependencies among POIs. Existing methods leverage Graph Neural Networks with the aid of pre-defined POI graphs to capture such indispensable correlations for modeling user preferences, assuming that the appropriate geographical dependencies among POIs could be pre-determined. However, the pre-defined graph structures are always far from the optimal graph topology due to noise and adaptability issues, which may decrease the expressivity of learned POI representations as well as the credibility of modeling user preferences. In this paper, we propose a novel Adaptive Graph Representation-enhanced Attention Network (AGRAN) for next POI recommendation, which explores the utilization of graph structure learning to replace the pre-defined static graphs for learning more expressive representations of POIs. In particular, we develop an adaptive POI graph matrix and learn it via similarity learning with POI embeddings, automatically capturing the underlying geographical dependencies for representation learning. Afterward, we incorporate the learned representations of POIs and personalized spatial-temporal information with an extension to the self-attention mechanism for capturing dynamic user preferences. Extensive experiments conducted on two real-world datasets validate the superior performance of our proposed method over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bellapp完成签到 ,获得积分10
1秒前
yznfly应助归尘采纳,获得20
3秒前
酷波er应助归尘采纳,获得10
3秒前
华仔应助归尘采纳,获得100
3秒前
CipherSage应助归尘采纳,获得10
3秒前
yydragen应助归尘采纳,获得30
8秒前
今后应助归尘采纳,获得10
8秒前
李爱国应助归尘采纳,获得10
8秒前
CodeCraft应助归尘采纳,获得10
8秒前
禾安应助归尘采纳,获得20
8秒前
完美世界应助归尘采纳,获得10
9秒前
Lucas应助归尘采纳,获得30
9秒前
汉堡包应助归尘采纳,获得10
9秒前
NexusExplorer应助归尘采纳,获得10
9秒前
英俊的铭应助归尘采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
Rondab应助科研通管家采纳,获得10
10秒前
Rondab应助科研通管家采纳,获得10
10秒前
YifanWang应助科研通管家采纳,获得10
10秒前
YifanWang应助科研通管家采纳,获得10
10秒前
cc应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
Rondab应助科研通管家采纳,获得10
10秒前
YifanWang应助科研通管家采纳,获得20
10秒前
Sandy应助科研通管家采纳,获得80
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
半城微凉关注了科研通微信公众号
14秒前
FanFan应助归尘采纳,获得30
15秒前
情怀应助归尘采纳,获得10
15秒前
yar应助归尘采纳,获得10
15秒前
科研通AI2S应助归尘采纳,获得10
15秒前
英俊的铭应助归尘采纳,获得10
15秒前
星辰大海应助归尘采纳,获得10
15秒前
传奇3应助归尘采纳,获得30
16秒前
光影相生应助归尘采纳,获得10
16秒前
无花果应助归尘采纳,获得10
16秒前
万能图书馆应助归尘采纳,获得10
16秒前
完美世界应助归尘采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056