Adaptive Graph Representation Learning for Next POI Recommendation

计算机科学 特征学习 杠杆(统计) 图形 理论计算机科学 适应性 机器学习 人工智能 数据挖掘 生态学 生物
作者
Zhaobo Wang,Yanmin Zhu,Chunyang Wang,Wenze Ma,Bo Li,Jiadi Yu
标识
DOI:10.1145/3539618.3591634
摘要

Next Point-of-Interest (POI) recommendation is an essential part of the flourishing location-based applications, where the demands of users are not only conditioned by their recent check-in behaviors but also by the critical influence stemming from geographical dependencies among POIs. Existing methods leverage Graph Neural Networks with the aid of pre-defined POI graphs to capture such indispensable correlations for modeling user preferences, assuming that the appropriate geographical dependencies among POIs could be pre-determined. However, the pre-defined graph structures are always far from the optimal graph topology due to noise and adaptability issues, which may decrease the expressivity of learned POI representations as well as the credibility of modeling user preferences. In this paper, we propose a novel Adaptive Graph Representation-enhanced Attention Network (AGRAN) for next POI recommendation, which explores the utilization of graph structure learning to replace the pre-defined static graphs for learning more expressive representations of POIs. In particular, we develop an adaptive POI graph matrix and learn it via similarity learning with POI embeddings, automatically capturing the underlying geographical dependencies for representation learning. Afterward, we incorporate the learned representations of POIs and personalized spatial-temporal information with an extension to the self-attention mechanism for capturing dynamic user preferences. Extensive experiments conducted on two real-world datasets validate the superior performance of our proposed method over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
今夜有雨完成签到 ,获得积分10
2秒前
2秒前
桐桐应助根深者叶茂采纳,获得10
2秒前
ballball233发布了新的文献求助10
3秒前
NexusExplorer应助科研通管家采纳,获得30
3秒前
kingwill发布了新的文献求助30
3秒前
克劳修斯发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得100
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
blue完成签到,获得积分10
5秒前
研友_Z6Qrbn发布了新的文献求助10
7秒前
Panda完成签到,获得积分10
8秒前
8秒前
11秒前
天空之下发布了新的文献求助10
11秒前
11秒前
小豆芽完成签到,获得积分10
11秒前
无花果应助zxd采纳,获得10
11秒前
12秒前
顾矜应助wergou采纳,获得10
12秒前
12秒前
科研通AI6应助王旭采纳,获得10
12秒前
13秒前
13秒前
yk123发布了新的文献求助10
14秒前
hiter发布了新的文献求助30
14秒前
14秒前
14秒前
15秒前
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920