Adaptive Graph Representation Learning for Next POI Recommendation

计算机科学 特征学习 杠杆(统计) 图形 理论计算机科学 适应性 机器学习 人工智能 数据挖掘 生态学 生物
作者
Zhaobo Wang,Yanmin Zhu,Chunyang Wang,Wenze Ma,Bo Li,Jiadi Yu
标识
DOI:10.1145/3539618.3591634
摘要

Next Point-of-Interest (POI) recommendation is an essential part of the flourishing location-based applications, where the demands of users are not only conditioned by their recent check-in behaviors but also by the critical influence stemming from geographical dependencies among POIs. Existing methods leverage Graph Neural Networks with the aid of pre-defined POI graphs to capture such indispensable correlations for modeling user preferences, assuming that the appropriate geographical dependencies among POIs could be pre-determined. However, the pre-defined graph structures are always far from the optimal graph topology due to noise and adaptability issues, which may decrease the expressivity of learned POI representations as well as the credibility of modeling user preferences. In this paper, we propose a novel Adaptive Graph Representation-enhanced Attention Network (AGRAN) for next POI recommendation, which explores the utilization of graph structure learning to replace the pre-defined static graphs for learning more expressive representations of POIs. In particular, we develop an adaptive POI graph matrix and learn it via similarity learning with POI embeddings, automatically capturing the underlying geographical dependencies for representation learning. Afterward, we incorporate the learned representations of POIs and personalized spatial-temporal information with an extension to the self-attention mechanism for capturing dynamic user preferences. Extensive experiments conducted on two real-world datasets validate the superior performance of our proposed method over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
拉佛多格发布了新的文献求助20
2秒前
2秒前
落寞臻发布了新的文献求助10
2秒前
3秒前
3秒前
Finger发布了新的文献求助10
4秒前
5秒前
麦苳发布了新的文献求助20
5秒前
6秒前
ECT完成签到,获得积分10
7秒前
7秒前
iVANPENNY应助结实擎苍采纳,获得10
7秒前
子车茗应助太渊采纳,获得30
8秒前
9秒前
芬栀发布了新的文献求助10
9秒前
刘鑫宇发布了新的文献求助10
9秒前
Tao122发布了新的文献求助10
10秒前
11秒前
ZIJUNZHAO完成签到 ,获得积分10
11秒前
man发布了新的文献求助10
11秒前
田様应助李宇超采纳,获得10
12秒前
张宇航完成签到,获得积分10
12秒前
共享精神应助Roseaiwade采纳,获得10
13秒前
shln完成签到,获得积分10
13秒前
14秒前
简单起眸发布了新的文献求助10
14秒前
korchid发布了新的文献求助10
15秒前
阿俊完成签到 ,获得积分10
17秒前
pluto应助忧虑的巧曼采纳,获得10
17秒前
传奇3应助1Aaa采纳,获得10
18秒前
不扯先生发布了新的文献求助10
18秒前
打打应助YJ888采纳,获得10
18秒前
19秒前
seebeg发布了新的文献求助20
19秒前
领导范儿应助芬栀采纳,获得10
21秒前
22秒前
彭于晏应助正方形的瓜皮采纳,获得10
22秒前
Rainielove0215完成签到,获得积分0
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600