Adaptive Graph Representation Learning for Next POI Recommendation

计算机科学 特征学习 杠杆(统计) 图形 理论计算机科学 适应性 机器学习 人工智能 数据挖掘 生态学 生物
作者
Zhaobo Wang,Yanmin Zhu,Chunyang Wang,Wenze Ma,Bo Li,Jiadi Yu
标识
DOI:10.1145/3539618.3591634
摘要

Next Point-of-Interest (POI) recommendation is an essential part of the flourishing location-based applications, where the demands of users are not only conditioned by their recent check-in behaviors but also by the critical influence stemming from geographical dependencies among POIs. Existing methods leverage Graph Neural Networks with the aid of pre-defined POI graphs to capture such indispensable correlations for modeling user preferences, assuming that the appropriate geographical dependencies among POIs could be pre-determined. However, the pre-defined graph structures are always far from the optimal graph topology due to noise and adaptability issues, which may decrease the expressivity of learned POI representations as well as the credibility of modeling user preferences. In this paper, we propose a novel Adaptive Graph Representation-enhanced Attention Network (AGRAN) for next POI recommendation, which explores the utilization of graph structure learning to replace the pre-defined static graphs for learning more expressive representations of POIs. In particular, we develop an adaptive POI graph matrix and learn it via similarity learning with POI embeddings, automatically capturing the underlying geographical dependencies for representation learning. Afterward, we incorporate the learned representations of POIs and personalized spatial-temporal information with an extension to the self-attention mechanism for capturing dynamic user preferences. Extensive experiments conducted on two real-world datasets validate the superior performance of our proposed method over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康小宋完成签到,获得积分10
刚刚
斯文败类应助CDX采纳,获得10
刚刚
善良的函发布了新的文献求助10
1秒前
打打应助含蓄的傲霜采纳,获得10
2秒前
3秒前
3秒前
4秒前
wanci应助13采纳,获得10
4秒前
silentforsure发布了新的文献求助10
5秒前
llyu完成签到,获得积分10
5秒前
嘟嘟完成签到,获得积分10
5秒前
樱书发布了新的文献求助10
5秒前
5秒前
binz完成签到,获得积分0
6秒前
奋力加载ing完成签到,获得积分20
7秒前
lzxucn发布了新的文献求助10
7秒前
在水一方应助灵巧的石头采纳,获得10
7秒前
3089ggf发布了新的文献求助10
7秒前
7秒前
123完成签到,获得积分20
8秒前
liua发布了新的文献求助10
8秒前
无情访琴发布了新的文献求助30
10秒前
量子星尘发布了新的文献求助10
11秒前
二甜发布了新的文献求助10
12秒前
13秒前
13秒前
大胖小子完成签到,获得积分10
13秒前
小蘑菇应助yxy采纳,获得10
13秒前
16秒前
Hanoi347应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
追寻鞋垫应助科研通管家采纳,获得10
17秒前
17秒前
打打应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
追寻鞋垫应助科研通管家采纳,获得10
17秒前
传奇3应助灵巧的石头采纳,获得10
17秒前
畅畅发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657