MET Fusions in NSCLC: Clinicopathologic Features and Response to MET Inhibition

医学 腺癌 队列 内科学 肿瘤科 融合基因 癌症 置信区间 疾病 突变 人口统计学的 基因 遗传学 人口学 生物 社会学
作者
Richard Riedel,Jana Fassunke,Andreas H. Scheel,Matthias Scheffler,Carina Heydt,Lucia Nogová,Sebastian Michels,R. Fischer,Anna Eisert,Heather Scharpenseel,Felix John,Lea Ruge,Diana Schaufler,Janna Siemanowski,Michaela A. Ihle,Svenja Wagener‐Ryczek,Roberto Pappesch,Jan Rehker,Anne Bunck,Carsten Kobe
出处
期刊:Journal of Thoracic Oncology [Elsevier BV]
卷期号:19 (1): 160-165 被引量:10
标识
DOI:10.1016/j.jtho.2023.06.020
摘要

Introduction MET fusions have been described only rarely in NSCLC. Thus, data on patient characteristics and treatment response are limited. We here report histopathologic data, patient demographics, and treatment outcome including response to MET tyrosine kinase inhibitor (TKI) therapy in MET fusion-positive NSCLC. Methods Patients with NSCLC and MET fusions were identified mostly by RNA sequencing within the routine molecular screening program of the national Network Genomic Medicine, Germany. Results We describe a cohort of nine patients harboring MET fusions. Among these nine patients, two patients had been reported earlier. The overall frequency was 0.29% (95% confidence interval: 0.15–0.55). The tumors were exclusively adenocarcinoma. The cohort was heterogeneous in terms of age, sex, or smoking status. We saw five different fusion partner genes (KIF5B, TRIM4, ST7, PRKAR2B, and CAPZA2) and several different breakpoints. Four patients were treated with a MET TKI leading to two partial responses, one stable disease, and one progressive disease. One patient had a BRAF V600E mutation as acquired resistance mechanism. Conclusions MET fusions are very rare oncogenic driver events in NSCLC and predominantly seem in adenocarcinomas. They are heterogeneous in terms of fusion partners and breakpoints. Patients with MET fusion can benefit from MET TKI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leecarp发布了新的文献求助10
刚刚
天才臭屁星完成签到 ,获得积分10
1秒前
菲尔完成签到 ,获得积分10
2秒前
Sylvia发布了新的文献求助10
2秒前
完美世界应助4433采纳,获得10
2秒前
搜集达人应助乐观小之采纳,获得10
3秒前
劲秉应助gift采纳,获得10
3秒前
concise完成签到 ,获得积分10
4秒前
4秒前
天天快乐应助66ds采纳,获得10
4秒前
5秒前
陶陶完成签到,获得积分10
5秒前
zxf完成签到 ,获得积分10
5秒前
丫丫完成签到,获得积分10
6秒前
6秒前
不会画画完成签到,获得积分10
6秒前
研友_Z7gWlZ发布了新的文献求助10
6秒前
7秒前
四级完成签到,获得积分20
7秒前
zyg发布了新的文献求助10
7秒前
万能图书馆应助伶俐如冰采纳,获得10
7秒前
ANESTHESIA_XY完成签到 ,获得积分10
8秒前
orixero应助威武如柏采纳,获得10
8秒前
8秒前
9秒前
不会画画发布了新的文献求助10
10秒前
高高完成签到 ,获得积分10
11秒前
11秒前
11秒前
涛哥发布了新的文献求助10
11秒前
13秒前
左眼天堂发布了新的文献求助20
15秒前
minne发布了新的文献求助30
15秒前
17秒前
SciGPT应助朴实的小懒虫采纳,获得10
17秒前
宋百言发布了新的文献求助10
17秒前
Albert发布了新的文献求助20
17秒前
哎呀我去发布了新的文献求助10
18秒前
婧婧婧发布了新的文献求助10
18秒前
彭于彦祖应助Damon采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735018
求助须知:如何正确求助?哪些是违规求助? 3278902
关于积分的说明 10012243
捐赠科研通 2995542
什么是DOI,文献DOI怎么找? 1643492
邀请新用户注册赠送积分活动 781270
科研通“疑难数据库(出版商)”最低求助积分说明 749338