自噬
PI3K/AKT/mTOR通路
蛋白激酶B
癌症研究
U87型
生物
细胞生长
信号转导
胶质瘤
细胞生物学
细胞凋亡
遗传学
生物化学
作者
Jia‐zhe Lin,Nuan Lin,Weijiang Zhao
摘要
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Studies have shown that autophagy-related (ATG) genes play important roles in regulating GBM malignancy. However, the mechanism still needs to be fully elucidated. Based on clinical and gene expression information of GBM patients downloaded from The The Cancer Genome Atlas database, Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression were applied to construct a risk signature for GBM prognosis, followed by validation using receiver operating characteristic analysis. Next, Cell Counting Kit-8, wound healing assay, flow cytometry, monodansyl cadaverine autophagy staining assay, immunofluorescence staining and western blot, either in the absence or presence of ERBB2/AKT/mTOR inhibitors, were carried out in GBM U87 cell line to explore molecular pathway underlying GBM malignancy. A three-ATG-gene signature (HIF1A, ITGA3, and NGR1) was constructed for GBM prognosis with the greatest contribution from NRG1. In vitro experiments showed that NRG1 promoted U87 cell migration and proliferation by inhibiting autophagy, and ERBB2/AKT/mTOR is a downstream pathway that mediates the autophagy-inhibitory effects of NRG1. We constructed an ATG gene prognostic model for GBM and demonstrated that NRG1 inhibited autophagy by activating ERBB2/AKT/mTOR, promoting GBM malignancy, thus providing new insights into the molecular contribution of autophagy in GBM malignancy.
科研通智能强力驱动
Strongly Powered by AbleSci AI