亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Acoustic Emission Source Localization using Deep Transfer Learning and Finite Element Modeling–based Knowledge Transfer

学习迁移 深度学习 计算机科学 人工智能 人工神经网络 知识转移 过程(计算) 声发射 有限元法 源模型 机器学习 传递函数 声学 工程类 电气工程 结构工程 知识管理 物理 理论计算机科学 操作系统
作者
Xuhui Huang,Obaid Elshafiey,Karim Farzia,Лалита Удпа,Ming Han,Yiming Deng
出处
期刊:Materials evaluation [The American Society for Nondestructive Testing, Inc.]
卷期号:81 (7): 71-84
标识
DOI:10.32548/2023.me-04348
摘要

This paper presents a novel data-driven approach to localize two types of acoustic emission sources in an aluminum plate, namely a Hsu-Nielsen source, which simulates a crack-like source, and steel ball impacts of varying diameters acting as the impact source. While deep neural networks have shown promise in previous studies, achieving high accuracy requires a large amount of training data, which may not always be feasible. To address this challenge, we investigated the applicability of transfer learning to address the issue of limited training data. Our approach involves transferring knowledge learned from numerical modeling to the experimental domain to localize nine different source locations. In the process, we evaluated six deep learning architectures using tenfold cross-validation and demonstrated the potential of transfer learning for efficient acoustic emission source localization, even with limited experimental data. This study contributes to the growing demand for running deep learning models with limited capacity and training time and highlights the promise of transfer learning methods such as fine-tuning pretrained models on large semi-related datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
草木完成签到,获得积分20
23秒前
可口可乐完成签到,获得积分10
45秒前
51秒前
2641490618发布了新的文献求助10
55秒前
2641490618完成签到,获得积分10
1分钟前
酷波er应助liuliu采纳,获得10
1分钟前
房明锴完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
眯眯眼的龙猫完成签到,获得积分10
2分钟前
2分钟前
南宫愚志完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
fukase发布了新的文献求助10
3分钟前
3分钟前
jfc完成签到 ,获得积分10
3分钟前
liuliu发布了新的文献求助10
3分钟前
怡然自中完成签到 ,获得积分10
4分钟前
延迟整流钾电流完成签到,获得积分10
4分钟前
4分钟前
Hu完成签到,获得积分20
4分钟前
liuliu发布了新的文献求助10
5分钟前
lovelife完成签到,获得积分10
5分钟前
liuliu完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
fukase完成签到,获得积分10
5分钟前
renhuizhi完成签到,获得积分10
5分钟前
xxx发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091