Hybrid Modeling of Engineered Biological Systems through Coupling Data-Driven Calibration of Kinetic Parameters with Mechanistic Prediction of System Performance

生物系统 均方误差 组分(热力学) 校准 计算机科学 实验设计 实验数据 人工神经网络 近似误差 算法 数学 人工智能 统计 物理 生物 热力学
作者
Cheng Zhang,Avner Ronen,Heyang Yuan
出处
期刊:ACS ES&T water [American Chemical Society]
标识
DOI:10.1021/acsestwater.3c00131
摘要

Mechanistic models can provide predictive insight into the design and optimization of engineered biological systems, but the kinetic parameters in these models need to be frequently calibrated and uniquely identified. This limitation can be addressed by hybrid modeling that integrates mechanistic models with data-driven approaches. Herein, we developed a hybrid modeling strategy using bioelectrochemical systems as a platform system. The data-driven component consisted of artificial neural networks (ANNs) trained with mechanistically derived kinetic parameters as outputs to compute error signals. The hybrid model was built using 148 samples from the literature. After 10-fold cross-validation, the model was tested with another 28 samples. Internal resistance was accurately predicted with a relative root-mean-square error (RMSE) of 3.9%. Microbial kinetic parameters were predicted using the data-driven component and fed into the mechanistic component to simulate the system performance. The R2 values between predicted and observed organic removal and current for systems fed with a simple substrate were 0.90 and 0.94, respectively, significantly higher than those obtained from the stand-alone data-driven model (0.51 and 0) and mechanistic model (0.07 and 0.15). This strategy can potentially be applied to engineered biological systems for in silico system design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dlan完成签到,获得积分10
1秒前
呆萌井完成签到,获得积分10
1秒前
2秒前
鉴湖完成签到,获得积分10
2秒前
001完成签到,获得积分10
2秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
2秒前
efengmo完成签到,获得积分10
3秒前
天真南松完成签到,获得积分10
4秒前
讨厌下雨天完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
lii完成签到,获得积分10
8秒前
哦哦完成签到,获得积分10
9秒前
ninomae完成签到 ,获得积分10
12秒前
渴望者完成签到,获得积分10
12秒前
lzl007完成签到 ,获得积分10
13秒前
只争朝夕完成签到,获得积分10
15秒前
yin完成签到,获得积分10
15秒前
abbytang完成签到 ,获得积分10
15秒前
优雅沛文完成签到 ,获得积分10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
sjw525完成签到,获得积分10
17秒前
小公牛完成签到 ,获得积分10
19秒前
李正纲完成签到 ,获得积分10
20秒前
Criminology34应助1101592875采纳,获得10
25秒前
25秒前
26秒前
孟小宝完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
mojomars完成签到,获得积分0
28秒前
ryq327完成签到 ,获得积分10
29秒前
俏皮的老三完成签到 ,获得积分10
33秒前
小高同学完成签到,获得积分10
34秒前
潇洒的蝴蝶完成签到,获得积分10
35秒前
dldldl完成签到,获得积分10
35秒前
36秒前
养鸟的人完成签到,获得积分10
37秒前
Tin完成签到,获得积分10
37秒前
37秒前
Moonpie完成签到 ,获得积分10
38秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590