Hybrid Modeling of Engineered Biological Systems through Coupling Data-Driven Calibration of Kinetic Parameters with Mechanistic Prediction of System Performance

生物系统 均方误差 组分(热力学) 校准 计算机科学 实验设计 实验数据 人工神经网络 近似误差 算法 数学 人工智能 统计 物理 生物 热力学
作者
Cheng Zhang,Avner Ronen,Heyang Yuan
出处
期刊:ACS ES&T water [American Chemical Society]
标识
DOI:10.1021/acsestwater.3c00131
摘要

Mechanistic models can provide predictive insight into the design and optimization of engineered biological systems, but the kinetic parameters in these models need to be frequently calibrated and uniquely identified. This limitation can be addressed by hybrid modeling that integrates mechanistic models with data-driven approaches. Herein, we developed a hybrid modeling strategy using bioelectrochemical systems as a platform system. The data-driven component consisted of artificial neural networks (ANNs) trained with mechanistically derived kinetic parameters as outputs to compute error signals. The hybrid model was built using 148 samples from the literature. After 10-fold cross-validation, the model was tested with another 28 samples. Internal resistance was accurately predicted with a relative root-mean-square error (RMSE) of 3.9%. Microbial kinetic parameters were predicted using the data-driven component and fed into the mechanistic component to simulate the system performance. The R2 values between predicted and observed organic removal and current for systems fed with a simple substrate were 0.90 and 0.94, respectively, significantly higher than those obtained from the stand-alone data-driven model (0.51 and 0) and mechanistic model (0.07 and 0.15). This strategy can potentially be applied to engineered biological systems for in silico system design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静柚子关注了科研通微信公众号
3秒前
科研通AI2S应助gaosci采纳,获得10
4秒前
萧寒完成签到,获得积分10
4秒前
万能图书馆应助哲别采纳,获得10
5秒前
5秒前
852应助Mine采纳,获得10
5秒前
impending发布了新的文献求助10
8秒前
11秒前
11秒前
冷静妙海完成签到 ,获得积分10
12秒前
14秒前
搞怪柏柳发布了新的文献求助10
16秒前
16秒前
17秒前
LX发布了新的文献求助10
17秒前
Mine发布了新的文献求助10
17秒前
古工楼发布了新的文献求助10
20秒前
Jodie发布了新的文献求助10
20秒前
21秒前
Jasper应助幸福台灯采纳,获得10
21秒前
23秒前
24秒前
科研废物完成签到 ,获得积分10
26秒前
26秒前
安静柚子发布了新的文献求助30
27秒前
寻道图强应助hfy采纳,获得30
28秒前
王凡渡发布了新的文献求助10
28秒前
29秒前
29秒前
29秒前
科研通AI6应助Jodie采纳,获得10
31秒前
lichanshen完成签到,获得积分10
32秒前
跳跃的萧完成签到,获得积分10
33秒前
HSY发布了新的文献求助10
34秒前
岁大爷发布了新的文献求助10
35秒前
复杂的薯片完成签到,获得积分10
36秒前
浮游应助鲜艳的雨安采纳,获得10
42秒前
顺gsp完成签到 ,获得积分10
43秒前
Orange应助安静绯采纳,获得10
45秒前
追寻的访文完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870