Hybrid Modeling of Engineered Biological Systems through Coupling Data-Driven Calibration of Kinetic Parameters with Mechanistic Prediction of System Performance

生物系统 均方误差 组分(热力学) 校准 计算机科学 实验设计 实验数据 人工神经网络 近似误差 算法 数学 人工智能 统计 生物 热力学 物理
作者
Cheng Zhang,Avner Ronen,Heyang Yuan
出处
期刊:ACS ES&T water [American Chemical Society]
标识
DOI:10.1021/acsestwater.3c00131
摘要

Mechanistic models can provide predictive insight into the design and optimization of engineered biological systems, but the kinetic parameters in these models need to be frequently calibrated and uniquely identified. This limitation can be addressed by hybrid modeling that integrates mechanistic models with data-driven approaches. Herein, we developed a hybrid modeling strategy using bioelectrochemical systems as a platform system. The data-driven component consisted of artificial neural networks (ANNs) trained with mechanistically derived kinetic parameters as outputs to compute error signals. The hybrid model was built using 148 samples from the literature. After 10-fold cross-validation, the model was tested with another 28 samples. Internal resistance was accurately predicted with a relative root-mean-square error (RMSE) of 3.9%. Microbial kinetic parameters were predicted using the data-driven component and fed into the mechanistic component to simulate the system performance. The R2 values between predicted and observed organic removal and current for systems fed with a simple substrate were 0.90 and 0.94, respectively, significantly higher than those obtained from the stand-alone data-driven model (0.51 and 0) and mechanistic model (0.07 and 0.15). This strategy can potentially be applied to engineered biological systems for in silico system design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ali发布了新的文献求助30
刚刚
汉堡包应助羊咩咩哒采纳,获得10
1秒前
2秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
二分三分完成签到,获得积分10
6秒前
6秒前
7秒前
轻松元柏发布了新的文献求助20
7秒前
7秒前
勤奋愫发布了新的文献求助10
8秒前
个性的振家完成签到,获得积分10
8秒前
平淡雨雪发布了新的文献求助10
8秒前
jagger完成签到,获得积分10
9秒前
404938发布了新的文献求助10
9秒前
9秒前
10秒前
攀登者完成签到,获得积分10
11秒前
狗东西发布了新的文献求助10
11秒前
初淇发布了新的文献求助10
11秒前
11秒前
CodeCraft应助斌冰冰采纳,获得10
11秒前
觊诺应助205采纳,获得10
12秒前
12秒前
一盏壶发布了新的文献求助50
13秒前
ccm应助刘汐采纳,获得10
13秒前
13秒前
羊咩咩哒发布了新的文献求助10
13秒前
15秒前
舒心明杰完成签到,获得积分10
15秒前
wzbc完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
深情安青应助JasmineFeng采纳,获得10
18秒前
共享精神应助狗东西采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601611
求助须知:如何正确求助?哪些是违规求助? 4011231
关于积分的说明 12418727
捐赠科研通 3691229
什么是DOI,文献DOI怎么找? 2034937
邀请新用户注册赠送积分活动 1068230
科研通“疑难数据库(出版商)”最低求助积分说明 952765