亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid Modeling of Engineered Biological Systems through Coupling Data-Driven Calibration of Kinetic Parameters with Mechanistic Prediction of System Performance

生物系统 均方误差 组分(热力学) 校准 计算机科学 实验设计 实验数据 人工神经网络 近似误差 算法 数学 人工智能 统计 物理 生物 热力学
作者
Cheng Zhang,Avner Ronen,Heyang Yuan
出处
期刊:ACS ES&T water [American Chemical Society]
标识
DOI:10.1021/acsestwater.3c00131
摘要

Mechanistic models can provide predictive insight into the design and optimization of engineered biological systems, but the kinetic parameters in these models need to be frequently calibrated and uniquely identified. This limitation can be addressed by hybrid modeling that integrates mechanistic models with data-driven approaches. Herein, we developed a hybrid modeling strategy using bioelectrochemical systems as a platform system. The data-driven component consisted of artificial neural networks (ANNs) trained with mechanistically derived kinetic parameters as outputs to compute error signals. The hybrid model was built using 148 samples from the literature. After 10-fold cross-validation, the model was tested with another 28 samples. Internal resistance was accurately predicted with a relative root-mean-square error (RMSE) of 3.9%. Microbial kinetic parameters were predicted using the data-driven component and fed into the mechanistic component to simulate the system performance. The R2 values between predicted and observed organic removal and current for systems fed with a simple substrate were 0.90 and 0.94, respectively, significantly higher than those obtained from the stand-alone data-driven model (0.51 and 0) and mechanistic model (0.07 and 0.15). This strategy can potentially be applied to engineered biological systems for in silico system design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研圈外人采纳,获得10
6秒前
13秒前
搜集达人应助flyingpig采纳,获得10
13秒前
LJL完成签到 ,获得积分10
13秒前
ddrose发布了新的文献求助10
18秒前
科研通AI6应助ddrose采纳,获得10
27秒前
赘婿应助科研圈外人采纳,获得10
27秒前
41秒前
共享精神应助科研圈外人采纳,获得10
42秒前
阿茗完成签到 ,获得积分10
45秒前
knight7m完成签到 ,获得积分10
46秒前
49秒前
ppwq完成签到 ,获得积分10
50秒前
waomi发布了新的文献求助10
54秒前
慕青应助科研圈外人采纳,获得10
58秒前
脑洞疼应助寒冷又晴采纳,获得10
1分钟前
1分钟前
hb完成签到,获得积分0
1分钟前
1分钟前
可爱的函函应助激动的鹰采纳,获得10
1分钟前
1分钟前
寒冷又晴发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助寒冷又晴采纳,获得10
1分钟前
激动的鹰发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
2分钟前
依米完成签到,获得积分10
2分钟前
激动的鹰完成签到,获得积分10
2分钟前
2分钟前
王彤彤发布了新的文献求助10
2分钟前
小马甲应助王彤彤采纳,获得10
2分钟前
2分钟前
所所应助豆砸采纳,获得10
2分钟前
CipherSage应助JJ采纳,获得10
2分钟前
Lucky完成签到,获得积分20
2分钟前
寒冷又晴发布了新的文献求助10
2分钟前
JamesPei应助Lucky采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543167
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611117
捐赠科研通 4570598
什么是DOI,文献DOI怎么找? 2505827
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454407