亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid Modeling of Engineered Biological Systems through Coupling Data-Driven Calibration of Kinetic Parameters with Mechanistic Prediction of System Performance

生物系统 均方误差 组分(热力学) 校准 计算机科学 实验设计 实验数据 人工神经网络 近似误差 算法 数学 人工智能 统计 物理 生物 热力学
作者
Cheng Zhang,Avner Ronen,Heyang Yuan
出处
期刊:ACS ES&T water [American Chemical Society]
标识
DOI:10.1021/acsestwater.3c00131
摘要

Mechanistic models can provide predictive insight into the design and optimization of engineered biological systems, but the kinetic parameters in these models need to be frequently calibrated and uniquely identified. This limitation can be addressed by hybrid modeling that integrates mechanistic models with data-driven approaches. Herein, we developed a hybrid modeling strategy using bioelectrochemical systems as a platform system. The data-driven component consisted of artificial neural networks (ANNs) trained with mechanistically derived kinetic parameters as outputs to compute error signals. The hybrid model was built using 148 samples from the literature. After 10-fold cross-validation, the model was tested with another 28 samples. Internal resistance was accurately predicted with a relative root-mean-square error (RMSE) of 3.9%. Microbial kinetic parameters were predicted using the data-driven component and fed into the mechanistic component to simulate the system performance. The R2 values between predicted and observed organic removal and current for systems fed with a simple substrate were 0.90 and 0.94, respectively, significantly higher than those obtained from the stand-alone data-driven model (0.51 and 0) and mechanistic model (0.07 and 0.15). This strategy can potentially be applied to engineered biological systems for in silico system design and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周亚平发布了新的文献求助10
1秒前
2秒前
可爱若云发布了新的文献求助10
7秒前
wjl完成签到,获得积分10
8秒前
华仔应助Star采纳,获得10
10秒前
NattyPoe完成签到,获得积分10
12秒前
香蕉觅云应助浮浮世世采纳,获得10
13秒前
15秒前
周亚平完成签到,获得积分10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
思源应助勤奋的琳采纳,获得10
17秒前
19秒前
黄黄发布了新的文献求助20
21秒前
25秒前
等待完成签到,获得积分10
27秒前
Anony发布了新的文献求助10
28秒前
勤奋的琳完成签到,获得积分20
28秒前
keyanzhang完成签到 ,获得积分10
28秒前
29秒前
勤奋的琳发布了新的文献求助10
30秒前
33秒前
浮浮世世发布了新的文献求助10
34秒前
argwew完成签到,获得积分10
44秒前
顾良完成签到 ,获得积分10
44秒前
站岗小狗完成签到 ,获得积分10
44秒前
47秒前
Anony发布了新的文献求助10
47秒前
49秒前
49秒前
Yuanyuan发布了新的文献求助10
49秒前
zyx发布了新的文献求助30
51秒前
yxf发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509270
求助须知:如何正确求助?哪些是违规求助? 4604243
关于积分的说明 14489522
捐赠科研通 4538962
什么是DOI,文献DOI怎么找? 2487229
邀请新用户注册赠送积分活动 1469654
关于科研通互助平台的介绍 1441902