Multi-Task Learning With Hierarchical Guidance for Locating and Stratifying Submucosal Tumors

计算机科学 推论 模式识别(心理学) 分割 人工智能 特征(语言学) 分层(种子) 机器学习 种子休眠 哲学 语言学 植物 发芽 休眠 生物
作者
Ruifei Zhang,Feng Zhang,Si Qin,Dejun Fan,Chaowei Fang,Jing Ma,Xiang Wan,Guanbin Li,Xutao Lin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4478-4488
标识
DOI:10.1109/jbhi.2023.3291433
摘要

Locating and stratifying the submucosal tumor of the digestive tract from endoscopy ultrasound (EUS) images are of vital significance to the preliminary diagnosis of tumors. However, the above problems are challenging, due to the poor appearance contrast between different layers of the digestive tract wall (DTW) and the narrowness of each layer. Few of existing deep-learning based diagnosis algorithms are devised to tackle this issue. In this article, we build a multi-task framework for simultaneously locating and stratifying the submucosal tumor. And considering the awareness of the DTW is critical to the localization and stratification of the tumor, we integrate the DTW segmentation task into the proposed multi-task framework. Except for sharing a common backbone model, the three tasks are explicitly directed with a hierarchical guidance module, in which the probability map of DTW itself is used to locally enhance the feature representation for tumor localization, and the probability maps of DTW and tumor are jointly employed to locally enhance the feature representation for tumor stratification. Moreover, by means of the dynamic class activation map, probability maps of DTW and tumor are reused to enforce the stratification inference process to pay more attention to DTW and tumor regions, contributing to a reliable and interpretable submucosal tumor stratification model. Additionally, considering the relation with respect to other structures is beneficial for stratifying tumors, we devise a graph reasoning module to replenish non-local relation knowledge for the stratification branch. Experiments on a Stomach-Esophagus and an Intestinal EUS dataset prove that our method achieves very appealing performance on both tumor localization and stratification, significantly outperforming state-of-the-art object detection approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由香魔发布了新的文献求助10
2秒前
BK2008完成签到,获得积分10
4秒前
4秒前
6秒前
小洋人发布了新的文献求助10
7秒前
喝前姚一摇关注了科研通微信公众号
7秒前
自由香魔完成签到,获得积分10
8秒前
糯米糍发布了新的文献求助10
12秒前
19秒前
孤独振家完成签到,获得积分20
20秒前
糯米糍完成签到,获得积分10
21秒前
gu发布了新的文献求助10
24秒前
自觉远山完成签到 ,获得积分10
27秒前
29秒前
29秒前
果ghj完成签到,获得积分10
32秒前
ding应助佟韩采纳,获得10
32秒前
好想夏天发布了新的文献求助10
35秒前
果ghj发布了新的文献求助10
36秒前
张世奇发布了新的文献求助10
38秒前
41秒前
42秒前
阿东c完成签到 ,获得积分10
43秒前
天天快乐应助玄音采纳,获得10
44秒前
孟子豪发布了新的文献求助10
48秒前
yrh发布了新的文献求助10
49秒前
Owen应助zyfqpc采纳,获得20
52秒前
小苹果完成签到,获得积分10
52秒前
56秒前
XD发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ronin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
雨的诉说发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290