The net benefit for time-to-event outcome in oncology clinical trials with treatment switching

审查(临床试验) 协变量 估计员 反概率 逆概率加权 加权 统计 临床试验 生存分析 医学 计量经济学 数学 内科学 后验概率 贝叶斯概率 放射科
作者
Musashi Fukuda,Kentaro Sakamaki,Koji Oba
出处
期刊:Clinical Trials [SAGE]
卷期号:20 (6): 670-680
标识
DOI:10.1177/17407745231186081
摘要

The net benefit is an effect measure for any type of endpoint, including the time-to-event outcome, and can provide intuitive and clinically meaningful interpretation. It is defined as the probability of a randomly selected subject from the experimental arm surviving by at least a clinically relevant time longer than a randomly selected subject from the control arm. In oncology clinical trials, an intercurrent event such as treatment switching is common, which potentially causes informative censoring; nevertheless, conventional methods for the net benefit are not able to deal with it. In this study, we proposed a new estimator using the inverse probability of censoring weighting (IPCW) method and illustrated an oncology clinical trial with treatment switching (the SHIVA study) to apply the proposed method under the estimand framework.The net benefit can be estimated using the survival functions of each treatment group. The proposed estimator was based on the survival functions estimated by the inverse probability of the censoring weighting method that can handle covariate-dependent censoring. The simulation study was undertaken to evaluate the operating characteristics of the proposed estimator under several scenarios; we varied the shapes of the survival curves, treatment effect, covariates effect on censoring, proportion of the censoring, threshold of the net benefit, and sample size. We also applied conventional methods (the scoring rules by Péron or Gehan) and the proposed method to the SHIVA study.Our simulation study showed that the proposed estimator provided less biased results under the covariate-dependent censoring than existing estimators. When applying the proposed method to the SHIVA study, we were able to estimate the net benefit by incorporating the information of the covariates with different estimand strategies to address the intercurrent event of the treatment switching. However, the estimates of the proposed method and those of the aforementioned conventional methods were similar under the hypothetical strategy.We proposed a new estimator of the net benefit that can include covariates to account for the possibly informative censoring. We also provided an illustrative analysis of the proposed method for the oncology clinical trial with treatment switching using the estimand framework. Our proposed new estimator is suitable for handling the intercurrent events that can potentially cause covariate-dependent censoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
刚刚
sutharsons应助科研通管家采纳,获得30
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Eric_Lee2000应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
王子完成签到,获得积分10
2秒前
李繁蕊发布了新的文献求助10
3秒前
诚心的大碗应助明理念桃采纳,获得20
3秒前
4秒前
meng完成签到,获得积分10
4秒前
学者完成签到,获得积分10
4秒前
英俊的铭应助愉快盼曼采纳,获得10
5秒前
5秒前
小媛完成签到 ,获得积分10
6秒前
学术小白完成签到,获得积分20
6秒前
赘婿应助xiaomeng采纳,获得10
6秒前
Khr1stINK发布了新的文献求助10
6秒前
清新的苑博完成签到,获得积分10
6秒前
7秒前
果果瑞宁发布了新的文献求助10
8秒前
阿美发布了新的文献求助30
10秒前
10秒前
Jocelyn7完成签到,获得积分10
11秒前
wanyanjin应助yaoyao采纳,获得10
12秒前
Stephanie完成签到,获得积分20
12秒前
C_Cppp发布了新的文献求助10
12秒前
大抽是谁完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808