亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The net benefit for time-to-event outcome in oncology clinical trials with treatment switching

审查(临床试验) 协变量 估计员 反概率 逆概率加权 加权 统计 临床试验 生存分析 医学 计量经济学 数学 内科学 后验概率 贝叶斯概率 放射科
作者
Musashi Fukuda,Kentaro Sakamaki,Koji Oba
出处
期刊:Clinical Trials [SAGE]
卷期号:20 (6): 670-680
标识
DOI:10.1177/17407745231186081
摘要

The net benefit is an effect measure for any type of endpoint, including the time-to-event outcome, and can provide intuitive and clinically meaningful interpretation. It is defined as the probability of a randomly selected subject from the experimental arm surviving by at least a clinically relevant time longer than a randomly selected subject from the control arm. In oncology clinical trials, an intercurrent event such as treatment switching is common, which potentially causes informative censoring; nevertheless, conventional methods for the net benefit are not able to deal with it. In this study, we proposed a new estimator using the inverse probability of censoring weighting (IPCW) method and illustrated an oncology clinical trial with treatment switching (the SHIVA study) to apply the proposed method under the estimand framework.The net benefit can be estimated using the survival functions of each treatment group. The proposed estimator was based on the survival functions estimated by the inverse probability of the censoring weighting method that can handle covariate-dependent censoring. The simulation study was undertaken to evaluate the operating characteristics of the proposed estimator under several scenarios; we varied the shapes of the survival curves, treatment effect, covariates effect on censoring, proportion of the censoring, threshold of the net benefit, and sample size. We also applied conventional methods (the scoring rules by Péron or Gehan) and the proposed method to the SHIVA study.Our simulation study showed that the proposed estimator provided less biased results under the covariate-dependent censoring than existing estimators. When applying the proposed method to the SHIVA study, we were able to estimate the net benefit by incorporating the information of the covariates with different estimand strategies to address the intercurrent event of the treatment switching. However, the estimates of the proposed method and those of the aforementioned conventional methods were similar under the hypothetical strategy.We proposed a new estimator of the net benefit that can include covariates to account for the possibly informative censoring. We also provided an illustrative analysis of the proposed method for the oncology clinical trial with treatment switching using the estimand framework. Our proposed new estimator is suitable for handling the intercurrent events that can potentially cause covariate-dependent censoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜娜子完成签到 ,获得积分10
6秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
ycw7777完成签到,获得积分10
1分钟前
1分钟前
baobeikk完成签到 ,获得积分10
1分钟前
赎罪完成签到 ,获得积分10
1分钟前
zhw完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
欧耶欧椰完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
隐形曼青应助neversay4ever采纳,获得10
5分钟前
胜天半子完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
囚徒发布了新的文献求助10
5分钟前
6分钟前
neversay4ever发布了新的文献求助10
6分钟前
6分钟前
6分钟前
万能图书馆应助neversay4ever采纳,获得10
6分钟前
7分钟前
小碗完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
邓娅琴完成签到 ,获得积分10
8分钟前
8分钟前
neversay4ever发布了新的文献求助10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
neversay4ever完成签到,获得积分10
8分钟前
8分钟前
9分钟前
zxq1996完成签到 ,获得积分10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356868
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694464
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457611
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767