Deep neural network: As the novel pipelines in multiple preprocessing for Raman spectroscopy

计算机科学 预处理器 人工神经网络 噪音(视频) 人工智能 数据预处理 拉曼光谱 数据处理 信号处理 信号(编程语言) 降噪 小波 模式识别(心理学) 数字信号处理 光学 物理 计算机硬件 图像(数学) 程序设计语言 操作系统
作者
Chi Gao,Peng Zhao,Qi Fan,Haonan Jing,Ruochen Dang,Weifeng Sun,Yutao Feng,Bingliang Hu,Quan Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:302: 123086-123086 被引量:13
标识
DOI:10.1016/j.saa.2023.123086
摘要

Raman spectroscopy is a kind of vibrational method that can rapidly and non-invasively gives chemical structural information with the Raman spectrometer. Despite its technical advantages, in practical application scenarios, Raman spectroscopy often suffers from interference, such as noises and baseline drifts, resulting in the inability to acquire high-quality Raman spectroscopy signals, which brings challenges to subsequent spectral analysis. The commonly applied spectral preprocessing methods, such as Savitzky-Golay smooth and wavelet transform, can only perform corresponding single-item processing and require manual intervention to carry out a series of tedious trial parameters. Especially, each scheme can only be used for a specific data set. In recent years, the development of deep neural networks has provided new solutions for intelligent preprocessing of spectral data. In this paper, we first creatively started from the basic mechanism of spectral signal generation and constructed a mathematical model of the Raman spectral signal. By counting the noise parameters of the real system, we generated a simulation dataset close to the output of the real system, which alleviated the dependence on data during deep learning training. Due to the powerful nonlinear fitting ability of the neural network, fully connected network model is constructed to complete the baseline estimation task simply and quickly. Then building the Unet model can effectively achieve spectral denoising, and combining it with baseline estimation can realize intelligent joint processing. Through the simulation dataset experiment, it is proved that compared with the classic method, the method proposed in this paper has obvious advantages, which can effectively improve the signal quality and further ensure the accuracy of the peak intensity. At the same time, when the proposed method is applied to the actual system, it also achieves excellent performance compared with the common method, which indirectly indicates the effectiveness of the Raman signal simulation model. The research presented in this paper offers a variety of efficient pipelines for the intelligent processing of Raman spectroscopy, which can adapt to the requirements of different tasks while providing a new idea for enhancing the quality of Raman spectroscopy signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助呆萌代桃采纳,获得10
1秒前
1秒前
1秒前
1秒前
3秒前
陈yunchuan发布了新的文献求助10
4秒前
村头树下发布了新的文献求助10
5秒前
Luisa发布了新的文献求助10
5秒前
xdedd发布了新的文献求助10
6秒前
汉堡包应助熊11采纳,获得10
6秒前
SB发布了新的文献求助10
8秒前
cc发布了新的文献求助10
8秒前
纷扰青山发布了新的文献求助10
8秒前
10秒前
冷语完成签到,获得积分10
10秒前
lls完成签到,获得积分20
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
夜半微风完成签到,获得积分10
14秒前
陈陈发布了新的文献求助10
15秒前
Zr完成签到,获得积分10
16秒前
尤亦云发布了新的文献求助10
17秒前
18秒前
拾诣发布了新的文献求助10
18秒前
witty完成签到,获得积分10
18秒前
18969431868发布了新的文献求助10
18秒前
18秒前
18秒前
Lialia发布了新的文献求助30
19秒前
脑洞疼应助空城的回忆采纳,获得10
19秒前
zcc完成签到,获得积分10
20秒前
20秒前
专注的语堂完成签到,获得积分10
21秒前
dby完成签到 ,获得积分10
21秒前
在水一方应助江江采纳,获得20
21秒前
21秒前
坤坤完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153477
求助须知:如何正确求助?哪些是违规求助? 2804686
关于积分的说明 7860928
捐赠科研通 2462634
什么是DOI,文献DOI怎么找? 1310875
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601794