Synchronization of train timetables in an urban rail network: A bi-objective optimization approach

计算机科学 准时 同步(交流) 火车 解算器 光学(聚焦) 元启发式 城市轨道交通 数学优化 运筹学 运输工程 工程类 计算机网络 算法 数学 物理 频道(广播) 光学 地图学 程序设计语言 地理
作者
Jiateng Yin,Miao Wang,Andrea D’Ariano,Jinlei Zhang,Lixing Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:174: 103142-103142 被引量:16
标识
DOI:10.1016/j.tre.2023.103142
摘要

As urban rail networks in big cities tend to expand, the synchronization of trains has become a key issue for improving the service quality of passengers because most urban rail transit systems in the world involve more than one connected line, and passengers must transfer between these lines. In contrast to most existing studies that focus on a single line, in this study, we focus on synchronized train timetable optimization in an urban rail transit network, considering the dynamic passenger demand with transfers as well as train loading capacity constraints. First, we propose a mixed-integer programming (MIP) formulation for the synchronization of training timetables, in which we consider the optimization of two objectives. The first objective is to minimize the total waiting time of passengers, involving arriving and transfer passengers. Our second objective is a synchronization quality indicator (SQI) with piecewise linear formulation, which we propose to evaluate the transfer convenience of passengers. Subsequently, we propose several linearization techniques to handle the nonlinear constraints in the MIP formulation, and we prove the tightness of our reformulations. To solve large-scale instances more efficiently, we also develop a hybrid adaptive large neighbor search algorithm that is compared with two benchmarks: the commercial solver CPLEX and a metaheuristic. Finally, we focus on a series of real-world instances based on historical data from the Beijing metro network. The results show that our algorithm outperforms both benchmarks, and the synchronized timetable generated by our approach reduces the average waiting time of passengers by 1.5% and improves the connection quality of the Beijing metro by 14.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一发布了新的文献求助10
1秒前
3秒前
3秒前
Jasper应助清爽代芹采纳,获得10
4秒前
4秒前
南夏发布了新的文献求助20
4秒前
哇哇的发布了新的文献求助10
5秒前
6秒前
小青椒完成签到,获得积分0
6秒前
nanjiab完成签到,获得积分20
6秒前
magie发布了新的文献求助10
7秒前
是安山发布了新的文献求助10
7秒前
a_完成签到,获得积分20
8秒前
醉熏的小蜜蜂完成签到 ,获得积分10
8秒前
wondor1111发布了新的文献求助10
10秒前
调皮语雪发布了新的文献求助10
11秒前
Jasper应助WN采纳,获得10
11秒前
lagom完成签到,获得积分10
12秒前
愤怒的小鸟完成签到,获得积分10
13秒前
14秒前
那时花开应助蜗牛采纳,获得80
14秒前
Andy完成签到 ,获得积分10
18秒前
Yan发布了新的文献求助60
20秒前
slin_sjtu完成签到,获得积分10
20秒前
20秒前
李健的小迷弟应助牛马采纳,获得10
21秒前
赵小胖完成签到,获得积分10
21秒前
22秒前
乐乐呀完成签到 ,获得积分10
23秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
无情的听蓉完成签到,获得积分10
24秒前
212完成签到,获得积分10
25秒前
abandon完成签到,获得积分10
25秒前
25秒前
制冷剂完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600913
求助须知:如何正确求助?哪些是违规求助? 4686477
关于积分的说明 14844184
捐赠科研通 4678943
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252