已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synchronization of train timetables in an urban rail network: A bi-objective optimization approach

计算机科学 准时 同步(交流) 火车 解算器 光学(聚焦) 元启发式 城市轨道交通 数学优化 运筹学 运输工程 工程类 计算机网络 算法 数学 物理 频道(广播) 光学 地图学 程序设计语言 地理
作者
Jiateng Yin,Miao Wang,Andrea D’Ariano,Jinlei Zhang,Lixing Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:174: 103142-103142 被引量:16
标识
DOI:10.1016/j.tre.2023.103142
摘要

As urban rail networks in big cities tend to expand, the synchronization of trains has become a key issue for improving the service quality of passengers because most urban rail transit systems in the world involve more than one connected line, and passengers must transfer between these lines. In contrast to most existing studies that focus on a single line, in this study, we focus on synchronized train timetable optimization in an urban rail transit network, considering the dynamic passenger demand with transfers as well as train loading capacity constraints. First, we propose a mixed-integer programming (MIP) formulation for the synchronization of training timetables, in which we consider the optimization of two objectives. The first objective is to minimize the total waiting time of passengers, involving arriving and transfer passengers. Our second objective is a synchronization quality indicator (SQI) with piecewise linear formulation, which we propose to evaluate the transfer convenience of passengers. Subsequently, we propose several linearization techniques to handle the nonlinear constraints in the MIP formulation, and we prove the tightness of our reformulations. To solve large-scale instances more efficiently, we also develop a hybrid adaptive large neighbor search algorithm that is compared with two benchmarks: the commercial solver CPLEX and a metaheuristic. Finally, we focus on a series of real-world instances based on historical data from the Beijing metro network. The results show that our algorithm outperforms both benchmarks, and the synchronized timetable generated by our approach reduces the average waiting time of passengers by 1.5% and improves the connection quality of the Beijing metro by 14.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助iijjj采纳,获得10
刚刚
Andrew完成签到,获得积分10
刚刚
2秒前
若宫伊芙发布了新的文献求助60
3秒前
fhg完成签到,获得积分10
4秒前
Wang_miao完成签到 ,获得积分10
4秒前
iijjj完成签到,获得积分10
5秒前
5秒前
Hello应助称心的蛟凤采纳,获得10
6秒前
Heyley完成签到,获得积分10
6秒前
SciGPT应助小飞采纳,获得10
7秒前
江姜酱先生完成签到,获得积分10
8秒前
8秒前
香香发布了新的文献求助20
9秒前
科研通AI6应助科研小新采纳,获得10
11秒前
JL完成签到 ,获得积分10
13秒前
DXR完成签到,获得积分10
14秒前
16秒前
w1245完成签到 ,获得积分10
16秒前
明亮不弱完成签到 ,获得积分10
18秒前
Dandy完成签到,获得积分10
18秒前
Frank完成签到 ,获得积分10
18秒前
19秒前
sxb10101应助zommen采纳,获得30
20秒前
洁净的千凡完成签到 ,获得积分20
20秒前
香香完成签到,获得积分20
20秒前
大模型应助小飞采纳,获得10
21秒前
lijiauyi1994发布了新的文献求助20
22秒前
Dandy发布了新的文献求助10
22秒前
23秒前
24秒前
动听衬衫完成签到 ,获得积分10
28秒前
29秒前
29秒前
发条橙数羊完成签到,获得积分10
30秒前
华仔应助DXR采纳,获得10
33秒前
andrele完成签到,获得积分10
36秒前
北风完成签到 ,获得积分10
37秒前
自信号厂完成签到 ,获得积分0
40秒前
饺子爱看文献哦完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650416
求助须知:如何正确求助?哪些是违规求助? 4780747
关于积分的说明 15052128
捐赠科研通 4809358
什么是DOI,文献DOI怎么找? 2572165
邀请新用户注册赠送积分活动 1528367
关于科研通互助平台的介绍 1487200