Synchronization of train timetables in an urban rail network: A bi-objective optimization approach

计算机科学 准时 同步(交流) 火车 解算器 光学(聚焦) 元启发式 城市轨道交通 服务质量 数学优化 钥匙(锁) 运筹学 实时计算 运输工程 工程类 计算机网络 算法 数学 频道(广播) 物理 程序设计语言 地理 光学 地图学 计算机安全
作者
Jianqin Yin,Miao Wang,Andrea D’Ariano,Jinlei Zhang,Lixing Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:174: 103142-103142 被引量:1
标识
DOI:10.1016/j.tre.2023.103142
摘要

As urban rail networks in big cities tend to expand, the synchronization of trains has become a key issue for improving the service quality of passengers because most urban rail transit systems in the world involve more than one connected line, and passengers must transfer between these lines. In contrast to most existing studies that focus on a single line, in this study, we focus on synchronized train timetable optimization in an urban rail transit network, considering the dynamic passenger demand with transfers as well as train loading capacity constraints. First, we propose a mixed-integer programming (MIP) formulation for the synchronization of training timetables, in which we consider the optimization of two objectives. The first objective is to minimize the total waiting time of passengers, involving arriving and transfer passengers. Our second objective is a synchronization quality indicator (SQI) with piecewise linear formulation, which we propose to evaluate the transfer convenience of passengers. Subsequently, we propose several linearization techniques to handle the nonlinear constraints in the MIP formulation, and we prove the tightness of our reformulations. To solve large-scale instances more efficiently, we also develop a hybrid adaptive large neighbor search algorithm that is compared with two benchmarks: the commercial solver CPLEX and a metaheuristic. Finally, we focus on a series of real-world instances based on historical data from the Beijing metro network. The results show that our algorithm outperforms both benchmarks, and the synchronized timetable generated by our approach reduces the average waiting time of passengers by 1.5% and improves the connection quality of the Beijing metro by 14.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君臣发布了新的文献求助10
1秒前
zhangsir发布了新的文献求助30
1秒前
2秒前
美丽的夜玉完成签到,获得积分10
4秒前
5秒前
7秒前
song完成签到,获得积分10
7秒前
8秒前
小福子发布了新的文献求助10
9秒前
拾壹完成签到,获得积分10
10秒前
俊逸的篮球完成签到,获得积分10
10秒前
君臣完成签到,获得积分20
11秒前
火星上云朵完成签到 ,获得积分10
12秒前
12秒前
谦让诗发布了新的文献求助10
13秒前
14秒前
刻苦的黑米完成签到,获得积分10
14秒前
李小汁完成签到 ,获得积分20
15秒前
9209完成签到 ,获得积分10
18秒前
19秒前
QQQQ发布了新的文献求助10
22秒前
香蕉觅云应助xien采纳,获得10
22秒前
CodeCraft应助Annabelle采纳,获得10
24秒前
25秒前
躺平研究生完成签到,获得积分10
25秒前
Owen应助mrcat采纳,获得10
26秒前
zhangxr发布了新的文献求助10
27秒前
玩命的柠檬完成签到,获得积分10
28秒前
28秒前
想做哥哥的伞钯完成签到,获得积分10
32秒前
33秒前
星辰大海应助拾壹采纳,获得10
34秒前
仁爱青文完成签到 ,获得积分10
35秒前
35秒前
36秒前
852应助科研通管家采纳,获得10
40秒前
无花果应助科研通管家采纳,获得10
40秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
所所应助科研通管家采纳,获得10
40秒前
Jasper应助科研通管家采纳,获得10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194