Synchronization of train timetables in an urban rail network: A bi-objective optimization approach

计算机科学 准时 同步(交流) 火车 解算器 光学(聚焦) 元启发式 城市轨道交通 数学优化 运筹学 运输工程 工程类 计算机网络 算法 数学 物理 频道(广播) 光学 地图学 程序设计语言 地理
作者
Jiateng Yin,Miao Wang,Andrea D’Ariano,Jinlei Zhang,Lixing Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:174: 103142-103142 被引量:16
标识
DOI:10.1016/j.tre.2023.103142
摘要

As urban rail networks in big cities tend to expand, the synchronization of trains has become a key issue for improving the service quality of passengers because most urban rail transit systems in the world involve more than one connected line, and passengers must transfer between these lines. In contrast to most existing studies that focus on a single line, in this study, we focus on synchronized train timetable optimization in an urban rail transit network, considering the dynamic passenger demand with transfers as well as train loading capacity constraints. First, we propose a mixed-integer programming (MIP) formulation for the synchronization of training timetables, in which we consider the optimization of two objectives. The first objective is to minimize the total waiting time of passengers, involving arriving and transfer passengers. Our second objective is a synchronization quality indicator (SQI) with piecewise linear formulation, which we propose to evaluate the transfer convenience of passengers. Subsequently, we propose several linearization techniques to handle the nonlinear constraints in the MIP formulation, and we prove the tightness of our reformulations. To solve large-scale instances more efficiently, we also develop a hybrid adaptive large neighbor search algorithm that is compared with two benchmarks: the commercial solver CPLEX and a metaheuristic. Finally, we focus on a series of real-world instances based on historical data from the Beijing metro network. The results show that our algorithm outperforms both benchmarks, and the synchronized timetable generated by our approach reduces the average waiting time of passengers by 1.5% and improves the connection quality of the Beijing metro by 14.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niuniu完成签到,获得积分10
刚刚
火火完成签到,获得积分10
刚刚
刚刚
真的不想干活了完成签到,获得积分10
2秒前
moon完成签到,获得积分10
2秒前
良言完成签到 ,获得积分10
2秒前
科研喵发布了新的文献求助10
3秒前
Zdh同学完成签到,获得积分10
3秒前
安雯完成签到,获得积分10
3秒前
Li完成签到,获得积分10
3秒前
4秒前
科研辣椒完成签到,获得积分10
4秒前
brick2024完成签到,获得积分10
4秒前
笑嘻嘻完成签到,获得积分10
4秒前
俏皮的采蓝完成签到,获得积分10
4秒前
孙意冉完成签到,获得积分10
4秒前
4秒前
痴情的中蓝完成签到,获得积分10
5秒前
我的小宇宙呢完成签到,获得积分10
6秒前
vera完成签到,获得积分10
6秒前
lml发布了新的文献求助10
6秒前
田様应助章章采纳,获得10
7秒前
爱听歌康乃馨完成签到,获得积分10
7秒前
六叶草完成签到,获得积分10
8秒前
liu123479完成签到,获得积分10
9秒前
凌露完成签到 ,获得积分0
9秒前
具体问题具体分析完成签到,获得积分10
9秒前
今后应助minmin959采纳,获得30
9秒前
_hhhjhhh完成签到,获得积分10
9秒前
10秒前
称心谷南完成签到,获得积分10
10秒前
Chimmy完成签到,获得积分10
11秒前
波安班完成签到,获得积分10
11秒前
11秒前
111完成签到,获得积分10
12秒前
12秒前
小王不爱上班完成签到,获得积分10
12秒前
李健应助cranberry采纳,获得10
13秒前
君无名完成签到 ,获得积分10
13秒前
荼蘼完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960243
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129837
捐赠科研通 3238572
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871927
科研通“疑难数据库(出版商)”最低求助积分说明 803099