Synchronization of train timetables in an urban rail network: A bi-objective optimization approach

计算机科学 准时 同步(交流) 火车 解算器 光学(聚焦) 元启发式 城市轨道交通 数学优化 运筹学 运输工程 工程类 计算机网络 算法 数学 物理 频道(广播) 光学 地图学 程序设计语言 地理
作者
Jiateng Yin,Miao Wang,Andrea D’Ariano,Jinlei Zhang,Lixing Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:174: 103142-103142 被引量:16
标识
DOI:10.1016/j.tre.2023.103142
摘要

As urban rail networks in big cities tend to expand, the synchronization of trains has become a key issue for improving the service quality of passengers because most urban rail transit systems in the world involve more than one connected line, and passengers must transfer between these lines. In contrast to most existing studies that focus on a single line, in this study, we focus on synchronized train timetable optimization in an urban rail transit network, considering the dynamic passenger demand with transfers as well as train loading capacity constraints. First, we propose a mixed-integer programming (MIP) formulation for the synchronization of training timetables, in which we consider the optimization of two objectives. The first objective is to minimize the total waiting time of passengers, involving arriving and transfer passengers. Our second objective is a synchronization quality indicator (SQI) with piecewise linear formulation, which we propose to evaluate the transfer convenience of passengers. Subsequently, we propose several linearization techniques to handle the nonlinear constraints in the MIP formulation, and we prove the tightness of our reformulations. To solve large-scale instances more efficiently, we also develop a hybrid adaptive large neighbor search algorithm that is compared with two benchmarks: the commercial solver CPLEX and a metaheuristic. Finally, we focus on a series of real-world instances based on historical data from the Beijing metro network. The results show that our algorithm outperforms both benchmarks, and the synchronized timetable generated by our approach reduces the average waiting time of passengers by 1.5% and improves the connection quality of the Beijing metro by 14.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的迎波完成签到,获得积分10
1秒前
李健的小迷弟应助火羊宝采纳,获得10
1秒前
陈末应助p454q采纳,获得10
2秒前
cc发布了新的文献求助30
2秒前
隐形曼青应助朴实的西装采纳,获得30
2秒前
晓鹏发布了新的文献求助10
2秒前
2秒前
Dimple发布了新的文献求助180
3秒前
ruicao发布了新的文献求助10
4秒前
淡淡的完成签到,获得积分10
4秒前
4秒前
Echo完成签到,获得积分10
5秒前
dachengzi完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
晓晓马儿完成签到 ,获得积分10
6秒前
想人陪的采蓝完成签到 ,获得积分20
6秒前
7秒前
8秒前
晓鹏完成签到,获得积分10
9秒前
Hardskills发布了新的文献求助30
9秒前
9秒前
10秒前
潇洒笑了发布了新的文献求助10
10秒前
11秒前
11秒前
英吉利25发布了新的文献求助10
12秒前
积极凡阳发布了新的文献求助10
12秒前
Zerolii发布了新的文献求助20
13秒前
寻找论文完成签到,获得积分10
13秒前
huahua诀绝子完成签到,获得积分10
14秒前
静默完成签到 ,获得积分0
15秒前
15秒前
NexusExplorer应助luckly采纳,获得10
16秒前
科研通AI6应助麻坛宗师采纳,获得10
16秒前
eros4发布了新的文献求助10
16秒前
汉堡包应助云朵朵采纳,获得10
17秒前
NXK发布了新的文献求助10
17秒前
晚风发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405578
求助须知:如何正确求助?哪些是违规求助? 4523892
关于积分的说明 14095685
捐赠科研通 4437639
什么是DOI,文献DOI怎么找? 2435806
邀请新用户注册赠送积分活动 1427882
关于科研通互助平台的介绍 1406122