Semantics lead all: Towards unified image registration and fusion from a semantic perspective

计算机科学 语义学(计算机科学) 人工智能 预处理器 钥匙(锁) 过程(计算) 可用性 图像融合 代表(政治) 语义鸿沟 图像配准 对象(语法) 计算机视觉 情报检索 图像(数学) 人机交互 图像检索 政治 计算机安全 程序设计语言 法学 政治学
作者
Housheng Xie,Yukuan Zhang,Junhui Qiu,Xiangshuai Zhai,Xuedong Liu,Yang Yang,Shan Zhao,Yongfang Luo,Jianbo Zhong
出处
期刊:Information Fusion [Elsevier BV]
卷期号:98: 101835-101835 被引量:42
标识
DOI:10.1016/j.inffus.2023.101835
摘要

Infrared–visible image registration and fusion are closely related processes, and it is an attractive problem to implement coordinated registration and fusion in a unified framework. The registration accuracy of existing methods fails to satisfy the fusion needs in some scenarios, which affects the fusion visual performance. In addition, as an image preprocessing step, the speed of the network after cascading registration and fusion is not sufficient for more advanced tasks, thus restricting the usability of these methods. To solve the above problems, we propose a network that uses semantics to lead all, termed SemLA, capable of unifying the registration and fusion processes in an efficient and robust way. Our key idea is to explicitly embed semantic information at all stages of the network. In particular, SemLA employs a coordinated approach that involves joint training of registration and semantic features to ensure efficient network operation. The calibration of the semantic-aware maps and the description of their spatial structure information mutually reinforce each other to obtain more accurate registration. Additionally, the semantic-guided fusion process enhances the representation of complementary information within the semantic object while effectively suppressing visual interference caused by overlapping regional demarcation lines of the aligned image. The results of different experiments show that our SemLA has a better tradeoff between performance and efficiency compared to state-of-the-art methods and adapts to the semantic needs of advanced vision tasks. The source code is publicly available at https://github.com/xiehousheng/SemLA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
HAFun发布了新的文献求助10
5秒前
5秒前
6秒前
苏甜发布了新的文献求助10
7秒前
su123发布了新的文献求助10
8秒前
ky幻影发布了新的文献求助10
9秒前
9秒前
李健应助waoller1采纳,获得10
10秒前
英俊的铭应助waoller1采纳,获得10
10秒前
10秒前
cyn0762完成签到 ,获得积分10
10秒前
wangzhen完成签到,获得积分20
11秒前
11秒前
11秒前
如梦如画发布了新的文献求助10
11秒前
CipherSage应助Ronnie采纳,获得10
13秒前
14秒前
wangzhen发布了新的文献求助10
16秒前
Aurora发布了新的文献求助10
17秒前
Arbor发布了新的文献求助10
18秒前
22秒前
San万完成签到,获得积分10
22秒前
sci完成签到,获得积分10
23秒前
乐乐应助好看的鸵鸟采纳,获得10
24秒前
Ronnie发布了新的文献求助10
26秒前
活力山蝶应助麻辣牛肉采纳,获得10
27秒前
28秒前
28秒前
ZJFL完成签到,获得积分10
29秒前
30秒前
2331547774发布了新的文献求助10
30秒前
湘华发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
32秒前
木头人应助酷酷羊乌云采纳,获得10
32秒前
烟花应助听话的白易采纳,获得10
32秒前
wisper发布了新的文献求助10
33秒前
herococa应助陶醉山灵采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341