Baseline correction for Raman spectra using a spectral estimation-based asymmetrically reweighted penalized least squares method

噪音(视频) 算法 最小二乘函数近似 平滑的 核(代数) 校准 数学 计算机科学 统计 人工智能 估计员 组合数学 图像(数学)
作者
Yixin Guo,Weiqi Jin,Weilin Wang,Yuqing He,Su Qiu
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:62 (18): 4766-4766 被引量:6
标识
DOI:10.1364/ao.489478
摘要

Baseline correction is necessary for the qualitative and quantitative analysis of samples because of the existence of background fluorescence interference in Raman spectra. The asymmetric least squares (ALS) method is an adaptive and automated algorithm that avoids peak detection operations along with other user interactions. However, current ALS-based improved algorithms only consider the smoothness configuration of regions where the signals are greater than the fitted baseline, which results in smoothing distortion. In this paper, an asymmetrically reweighted penalized least squares method based on spectral estimation (SEALS) is proposed. SEALS considers not only the uniform distribution of additive noise along the baseline but also the energy distribution of the signal above and below the fitted baseline. The energy distribution is estimated using inverse Fourier and autoregressive models to create a spectral estimation kernel. This kernel effectively optimizes and balances the asymmetric weight assigned to each data point. By doing so, it resolves the issue of local oversmoothing that is typically encountered in the asymmetrically reweighted penalized least squares method. This oversmoothing problem can negatively impact the iteration depth and accuracy of baseline fitting. In comparative experiments on simulated spectra, SEALS demonstrated a better baseline fitting performance compared to several other advanced baseline correction methods, both under moderate and strong fluorescence backgrounds. It has also been proven to be highly resistant to noise interference. When applied to real Raman spectra, the algorithm correctly restored the weak peaks and removed the fluorescence peaks, demonstrating the effectiveness of this method. The computation time of the proposed method was approximately 0.05 s, which satisfies the real-time baseline correction requirements of practical spectroscopy acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ya发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
hml123发布了新的文献求助10
1秒前
1秒前
千寻发布了新的文献求助10
1秒前
JamesPei应助脑残骑士老张采纳,获得10
1秒前
阳光凡儿完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
1秒前
2秒前
机灵冬灵发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
isaac完成签到,获得积分10
3秒前
3秒前
蚍蜉渡海发布了新的文献求助10
3秒前
大模型应助自信书文采纳,获得10
3秒前
滴滴叭叭完成签到,获得积分10
4秒前
4秒前
杜色建风完成签到,获得积分10
5秒前
星辰大海应助默默的紫真采纳,获得10
5秒前
lasfjas完成签到,获得积分10
5秒前
盈滢完成签到 ,获得积分10
5秒前
XMC2022完成签到,获得积分10
5秒前
6秒前
华仔应助rrfhl采纳,获得10
6秒前
1111完成签到,获得积分10
7秒前
缥缈的凌萱完成签到,获得积分10
7秒前
leah发布了新的文献求助10
7秒前
X欣发布了新的文献求助10
8秒前
lois完成签到,获得积分10
8秒前
9秒前
欧耶欧椰完成签到 ,获得积分10
9秒前
tassssadar完成签到,获得积分10
10秒前
10秒前
WAN发布了新的文献求助10
10秒前
10秒前
猫猫虫完成签到,获得积分10
11秒前
洪对对完成签到,获得积分10
11秒前
小张完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583