热电效应
散射
材料科学
声子散射
晶界
凝聚态物理
声子
热电材料
杂质
相(物质)
热导率
载流子散射
锗化合物
大气温度范围
分析化学(期刊)
微观结构
硅
锗
热力学
物理
光电子学
化学
光学
冶金
复合材料
量子力学
色谱法
作者
Wenpei Li,Zhonghai Yu,Chengyan Liu,Ying Peng,Baoquan Feng,Jie Gao,Guojing Wu,Xiaobo Bai,Junliang Chen,Xiao‐Yang Wang,Lei Miao
标识
DOI:10.26599/jac.2023.9220768
摘要
It is common sense that a phase interface (or grain boundary) could be used to scatter phonons in thermoelectric (TE) materials, resulting in low thermal conductivity (κ). However, a large number of impurity phases are always so harmful to the transport of carriers that poor TE performance is obtained. Here, we demonstrate that numerous superior multiphase (AgCuTe, Ag2Te, copper telluride (Cu2Te and Cu2−xTe), and nickel telluride (NiTe)) interfaces with simultaneous strong phonon scattering and weak electron scattering could be realized in AgCuTe-based TE materials. Owing to the similar chemical bonds in these phases, the depletion region at phase interfaces, which acts as carrier scattering centers, could be ignored. Therefore, the power factor (PF) is obviously enhanced from ~609 to ~832 μW·m−1·K−2, and κ is simultaneously decreased from ~0.52 to ~0.43 W·m−1·K−1 at 636 K. Finally, a peak figure of merit (zT) of ~1.23 at 636 K and an average zT (zTavg) of ~1.12 in the temperature range of 523–623 K are achieved, which are one of the best values among the AgCuTe-based TE materials. This study could provide new guidance to enhance the performance by designing superior multiphase interfaces in the TE materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI