Joint Edge Computing and Caching Based on D3QN for the Internet of Vehicles

计算机科学 隐藏物 缓存算法 智能缓存 能源消耗 缓存失效 分布式计算 缓存不经意算法 延迟(音频) 计算机网络 CPU缓存 生态学 电信 生物
作者
Geng Chen,Jingli Sun,Qingtian Zeng,Gang Jing,Yudong Zhang
出处
期刊:Electronics [MDPI AG]
卷期号:12 (10): 2311-2311 被引量:2
标识
DOI:10.3390/electronics12102311
摘要

With the Internet of Vehicles (IOV), a lot of self-driving vehicles (SDVs) need to handle a variety of tasks but have very seriously limited computing and storage resources, meaning they cannot complete intensive tasks timely. In this paper, a joint edge computing and caching based on a Dueling Double Deep Q Network (D3QN) is proposed to solve the problem of the multi-task joint edge calculation and caching process. Firstly, the processes of offloading tasks and caching them to the base station are modeled as optimization problems to maximize system revenues, which are limited by system latency and energy consumption as well as cache space for computing task constraints. Moreover, we also take into account the negative impact of the number of unfinished tasks in relation to the optimization problem—the higher the number of unfinished tasks, the lower the system revenue. Secondly, we use the D3QN algorithm together with the cache models to solve the formulated NP-hard problem and select the optimal caching and offloading action by adopting an e-greedy strategy. Moreover, two cache models are proposed in this paper to cache tasks, namely the active cache, based on the popularity of the task, and passive cache, based on the D3QN algorithm. Additionally, tasks which deal with cache space are updated by computing the expulsion value based on type of popularity. Finally, simulation results show that the proposed algorithm has good performance in terms of the latency and energy consumption of the system and that it improves utilization of cache space and reduces the probability of unfinished tasks. Compared to the Deep Q Network with caching policy, with the Double Deep Q Network with caching policy and Dueling Deep Q Network with caching policy, the system revenue of the proposed algorithm is improved by 65%, 35% and 66%, respectively. The scenario of the IOV proposed in this article can be expanded to larger-scale IOV systems by increasing the number of SDVs and base stations, and the content caching and download functions of the Internet of Things can also be achieved through collaboration between multiple base stations. However, only the cache model is focused on in this article, and the design of the replacement model is not good enough, resulting in a low utilization of cache resources. In future work, we will analyze how to make joint decisions based on multi-agent collaboration for caching, offloading and replacement in IOV scenarios with multiple heterogeneous services to support different Vehicle-to-Everything services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的扬完成签到,获得积分10
1秒前
1秒前
1秒前
xiangdan发布了新的文献求助10
2秒前
雨下听风完成签到 ,获得积分10
2秒前
i1发布了新的文献求助10
2秒前
3秒前
3秒前
烟花应助陆人甲采纳,获得10
3秒前
典雅的访风完成签到,获得积分10
3秒前
汉堡包应助贤惠的小夏采纳,获得10
3秒前
3秒前
sssxr完成签到,获得积分20
4秒前
小陈完成签到,获得积分10
4秒前
4秒前
balko发布了新的文献求助10
4秒前
5秒前
leze8发布了新的文献求助10
5秒前
biaji完成签到,获得积分10
6秒前
APFS完成签到,获得积分10
6秒前
6秒前
sss完成签到,获得积分10
6秒前
小陈发布了新的文献求助10
7秒前
宁琳发布了新的文献求助10
7秒前
8秒前
dakjdia发布了新的文献求助10
8秒前
8秒前
大个应助威武好吐司采纳,获得10
9秒前
9秒前
10秒前
10秒前
罗斯发布了新的文献求助10
10秒前
11秒前
leze8完成签到,获得积分10
11秒前
11秒前
Sledge发布了新的文献求助10
11秒前
之乎者也完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Hanoi347应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547690
求助须知:如何正确求助?哪些是违规求助? 4633175
关于积分的说明 14629650
捐赠科研通 4574689
什么是DOI,文献DOI怎么找? 2508493
邀请新用户注册赠送积分活动 1484916
关于科研通互助平台的介绍 1455986