Joint Edge Computing and Caching Based on D3QN for the Internet of Vehicles

计算机科学 隐藏物 缓存算法 智能缓存 能源消耗 缓存失效 分布式计算 缓存不经意算法 延迟(音频) 计算机网络 CPU缓存 生态学 电信 生物
作者
Geng Chen,Jingli Sun,Qingtian Zeng,Gang Jing,Yudong Zhang
出处
期刊:Electronics [MDPI AG]
卷期号:12 (10): 2311-2311 被引量:2
标识
DOI:10.3390/electronics12102311
摘要

With the Internet of Vehicles (IOV), a lot of self-driving vehicles (SDVs) need to handle a variety of tasks but have very seriously limited computing and storage resources, meaning they cannot complete intensive tasks timely. In this paper, a joint edge computing and caching based on a Dueling Double Deep Q Network (D3QN) is proposed to solve the problem of the multi-task joint edge calculation and caching process. Firstly, the processes of offloading tasks and caching them to the base station are modeled as optimization problems to maximize system revenues, which are limited by system latency and energy consumption as well as cache space for computing task constraints. Moreover, we also take into account the negative impact of the number of unfinished tasks in relation to the optimization problem—the higher the number of unfinished tasks, the lower the system revenue. Secondly, we use the D3QN algorithm together with the cache models to solve the formulated NP-hard problem and select the optimal caching and offloading action by adopting an e-greedy strategy. Moreover, two cache models are proposed in this paper to cache tasks, namely the active cache, based on the popularity of the task, and passive cache, based on the D3QN algorithm. Additionally, tasks which deal with cache space are updated by computing the expulsion value based on type of popularity. Finally, simulation results show that the proposed algorithm has good performance in terms of the latency and energy consumption of the system and that it improves utilization of cache space and reduces the probability of unfinished tasks. Compared to the Deep Q Network with caching policy, with the Double Deep Q Network with caching policy and Dueling Deep Q Network with caching policy, the system revenue of the proposed algorithm is improved by 65%, 35% and 66%, respectively. The scenario of the IOV proposed in this article can be expanded to larger-scale IOV systems by increasing the number of SDVs and base stations, and the content caching and download functions of the Internet of Things can also be achieved through collaboration between multiple base stations. However, only the cache model is focused on in this article, and the design of the replacement model is not good enough, resulting in a low utilization of cache resources. In future work, we will analyze how to make joint decisions based on multi-agent collaboration for caching, offloading and replacement in IOV scenarios with multiple heterogeneous services to support different Vehicle-to-Everything services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咿呀喂完成签到,获得积分10
3秒前
不重名完成签到 ,获得积分10
4秒前
成就觅海完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Japrin完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
温暖完成签到 ,获得积分10
14秒前
蛋堡完成签到 ,获得积分10
19秒前
Lucas应助研友_ZegMrL采纳,获得10
20秒前
量子星尘发布了新的文献求助30
20秒前
梁晓雪完成签到 ,获得积分10
20秒前
roundtree完成签到 ,获得积分0
23秒前
文静的翠彤完成签到 ,获得积分10
24秒前
25秒前
冷酷的忆安完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
研友_ZegMrL完成签到,获得积分10
32秒前
一枝完成签到 ,获得积分10
33秒前
sam完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
奇奇怪怪的大鱼完成签到,获得积分10
39秒前
lzy完成签到,获得积分10
40秒前
wBw完成签到,获得积分0
41秒前
42秒前
李海艳完成签到 ,获得积分10
44秒前
出厂价完成签到,获得积分10
45秒前
无极微光应助左白易采纳,获得20
47秒前
47秒前
量子星尘发布了新的文献求助10
47秒前
fay1987发布了新的文献求助10
48秒前
xingsixs完成签到 ,获得积分10
48秒前
GinaLundhild06完成签到,获得积分10
49秒前
可爱语芹发布了新的文献求助10
52秒前
往昔不过微澜完成签到,获得积分10
53秒前
求助完成签到,获得积分0
55秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764955
求助须知:如何正确求助?哪些是违规求助? 5557008
关于积分的说明 15406819
捐赠科研通 4899862
什么是DOI,文献DOI怎么找? 2636048
邀请新用户注册赠送积分活动 1584235
关于科研通互助平台的介绍 1539555