亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Edge Computing and Caching Based on D3QN for the Internet of Vehicles

计算机科学 隐藏物 缓存算法 智能缓存 能源消耗 缓存失效 分布式计算 缓存不经意算法 延迟(音频) 计算机网络 CPU缓存 生态学 电信 生物
作者
Geng Chen,Jingli Sun,Qingtian Zeng,Gang Jing,Yudong Zhang
出处
期刊:Electronics [MDPI AG]
卷期号:12 (10): 2311-2311 被引量:2
标识
DOI:10.3390/electronics12102311
摘要

With the Internet of Vehicles (IOV), a lot of self-driving vehicles (SDVs) need to handle a variety of tasks but have very seriously limited computing and storage resources, meaning they cannot complete intensive tasks timely. In this paper, a joint edge computing and caching based on a Dueling Double Deep Q Network (D3QN) is proposed to solve the problem of the multi-task joint edge calculation and caching process. Firstly, the processes of offloading tasks and caching them to the base station are modeled as optimization problems to maximize system revenues, which are limited by system latency and energy consumption as well as cache space for computing task constraints. Moreover, we also take into account the negative impact of the number of unfinished tasks in relation to the optimization problem—the higher the number of unfinished tasks, the lower the system revenue. Secondly, we use the D3QN algorithm together with the cache models to solve the formulated NP-hard problem and select the optimal caching and offloading action by adopting an e-greedy strategy. Moreover, two cache models are proposed in this paper to cache tasks, namely the active cache, based on the popularity of the task, and passive cache, based on the D3QN algorithm. Additionally, tasks which deal with cache space are updated by computing the expulsion value based on type of popularity. Finally, simulation results show that the proposed algorithm has good performance in terms of the latency and energy consumption of the system and that it improves utilization of cache space and reduces the probability of unfinished tasks. Compared to the Deep Q Network with caching policy, with the Double Deep Q Network with caching policy and Dueling Deep Q Network with caching policy, the system revenue of the proposed algorithm is improved by 65%, 35% and 66%, respectively. The scenario of the IOV proposed in this article can be expanded to larger-scale IOV systems by increasing the number of SDVs and base stations, and the content caching and download functions of the Internet of Things can also be achieved through collaboration between multiple base stations. However, only the cache model is focused on in this article, and the design of the replacement model is not good enough, resulting in a low utilization of cache resources. In future work, we will analyze how to make joint decisions based on multi-agent collaboration for caching, offloading and replacement in IOV scenarios with multiple heterogeneous services to support different Vehicle-to-Everything services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈完成签到 ,获得积分10
1秒前
13秒前
15秒前
Jasper应助杨sq采纳,获得10
18秒前
水水水发布了新的文献求助10
21秒前
50秒前
杨sq发布了新的文献求助10
54秒前
科研通AI6应助Trivers采纳,获得10
1分钟前
1分钟前
lsl应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得30
1分钟前
科研通AI6应助shier采纳,获得10
1分钟前
景清完成签到 ,获得积分10
2分钟前
顾矜应助kekao采纳,获得10
2分钟前
wanci应助Xhnz采纳,获得10
2分钟前
2分钟前
Xhnz发布了新的文献求助10
2分钟前
2分钟前
隐形曼青应助Xhnz采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
lsl应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
情怀应助动听海露采纳,获得10
4分钟前
4分钟前
4分钟前
动听海露发布了新的文献求助10
4分钟前
昏睡的梦安完成签到 ,获得积分10
4分钟前
5分钟前
宁不正发布了新的文献求助10
5分钟前
5分钟前
lsl应助科研通管家采纳,获得10
5分钟前
wanci应助宁不正采纳,获得10
5分钟前
Trivers发布了新的文献求助10
5分钟前
Freeasy完成签到 ,获得积分10
5分钟前
Trivers完成签到,获得积分10
5分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644707
求助须知:如何正确求助?哪些是违规求助? 4765184
关于积分的说明 15025524
捐赠科研通 4803066
什么是DOI,文献DOI怎么找? 2567894
邀请新用户注册赠送积分活动 1525458
关于科研通互助平台的介绍 1484992