Joint Edge Computing and Caching Based on D3QN for the Internet of Vehicles

计算机科学 隐藏物 缓存算法 智能缓存 能源消耗 缓存失效 分布式计算 缓存不经意算法 延迟(音频) 计算机网络 CPU缓存 生态学 电信 生物
作者
Geng Chen,Jingli Sun,Qingtian Zeng,Gang Jing,Yudong Zhang
出处
期刊:Electronics [MDPI AG]
卷期号:12 (10): 2311-2311 被引量:2
标识
DOI:10.3390/electronics12102311
摘要

With the Internet of Vehicles (IOV), a lot of self-driving vehicles (SDVs) need to handle a variety of tasks but have very seriously limited computing and storage resources, meaning they cannot complete intensive tasks timely. In this paper, a joint edge computing and caching based on a Dueling Double Deep Q Network (D3QN) is proposed to solve the problem of the multi-task joint edge calculation and caching process. Firstly, the processes of offloading tasks and caching them to the base station are modeled as optimization problems to maximize system revenues, which are limited by system latency and energy consumption as well as cache space for computing task constraints. Moreover, we also take into account the negative impact of the number of unfinished tasks in relation to the optimization problem—the higher the number of unfinished tasks, the lower the system revenue. Secondly, we use the D3QN algorithm together with the cache models to solve the formulated NP-hard problem and select the optimal caching and offloading action by adopting an e-greedy strategy. Moreover, two cache models are proposed in this paper to cache tasks, namely the active cache, based on the popularity of the task, and passive cache, based on the D3QN algorithm. Additionally, tasks which deal with cache space are updated by computing the expulsion value based on type of popularity. Finally, simulation results show that the proposed algorithm has good performance in terms of the latency and energy consumption of the system and that it improves utilization of cache space and reduces the probability of unfinished tasks. Compared to the Deep Q Network with caching policy, with the Double Deep Q Network with caching policy and Dueling Deep Q Network with caching policy, the system revenue of the proposed algorithm is improved by 65%, 35% and 66%, respectively. The scenario of the IOV proposed in this article can be expanded to larger-scale IOV systems by increasing the number of SDVs and base stations, and the content caching and download functions of the Internet of Things can also be achieved through collaboration between multiple base stations. However, only the cache model is focused on in this article, and the design of the replacement model is not good enough, resulting in a low utilization of cache resources. In future work, we will analyze how to make joint decisions based on multi-agent collaboration for caching, offloading and replacement in IOV scenarios with multiple heterogeneous services to support different Vehicle-to-Everything services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘚嘚完成签到,获得积分10
1秒前
哈哈发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
爱笑灵雁发布了新的文献求助10
2秒前
livra1058发布了新的文献求助10
3秒前
3秒前
杏子发布了新的文献求助10
3秒前
3秒前
研友_ndvmV8发布了新的文献求助10
3秒前
斯文败类应助含糊的寻雪采纳,获得10
4秒前
wwww发布了新的文献求助20
6秒前
CipherSage应助哈哈采纳,获得10
6秒前
馨妈完成签到 ,获得积分10
6秒前
Akim应助调皮的巧凡采纳,获得10
6秒前
大模型应助能干的初瑶采纳,获得30
8秒前
8秒前
8秒前
小螃蟹发布了新的文献求助10
9秒前
9秒前
9秒前
Owen应助小渔呦呦采纳,获得10
10秒前
10秒前
12秒前
Li完成签到,获得积分10
12秒前
999完成签到,获得积分10
12秒前
13秒前
笑点低凝荷完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
xuanxuan完成签到 ,获得积分20
16秒前
量子星尘发布了新的文献求助10
17秒前
汕大华瑞喆完成签到,获得积分10
17秒前
香蕉觅云应助HJJHJH采纳,获得10
18秒前
杏子发布了新的文献求助10
18秒前
19秒前
黑米粥发布了新的文献求助10
19秒前
英姑应助风中沛柔采纳,获得30
19秒前
Anqiang发布了新的文献求助10
19秒前
lele完成签到 ,获得积分10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687