已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influence-Driven Data Poisoning for Robust Recommender Systems

计算机科学 稳健性(进化) 推荐系统 危害 违反直觉 发电机(电路理论) 对抗制 实证研究 计算机安全 机器学习 人工智能 生物化学 化学 基因 哲学 功率(物理) 物理 认识论 量子力学 政治学 法学
作者
Chenwang Wu,Defu Lian,Yong Ge,Zhihao Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11915-11931 被引量:14
标识
DOI:10.1109/tpami.2023.3274759
摘要

Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
医平青云完成签到 ,获得积分10
4秒前
somnus_fu发布了新的文献求助10
6秒前
zhenzheng完成签到 ,获得积分10
6秒前
7秒前
Xutz应助Jm采纳,获得10
8秒前
nicewink发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
14秒前
星辰大海应助蓦然回首采纳,获得20
16秒前
上官又莲完成签到,获得积分10
17秒前
养恩应助lvlei采纳,获得10
18秒前
bias发布了新的文献求助10
19秒前
沐1217发布了新的文献求助10
19秒前
21秒前
cnd完成签到 ,获得积分10
27秒前
华仔应助杭子轩采纳,获得10
27秒前
turui完成签到 ,获得积分10
27秒前
hani发布了新的文献求助10
28秒前
慕青应助葭月十七采纳,获得10
28秒前
28秒前
29秒前
cuidalice完成签到,获得积分10
30秒前
34秒前
34秒前
高兴寒梦完成签到 ,获得积分10
35秒前
潇洒的奇异果完成签到 ,获得积分10
36秒前
葭月十七发布了新的文献求助10
39秒前
英姑应助沐1217采纳,获得10
39秒前
研友_n0Dmwn发布了新的文献求助10
40秒前
40秒前
40秒前
41秒前
shaung yang完成签到,获得积分10
42秒前
hani完成签到,获得积分10
42秒前
43秒前
小面包狗发布了新的文献求助10
45秒前
飞飞飞fff完成签到 ,获得积分10
46秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229546
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8198010
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374437
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749