Influence-Driven Data Poisoning for Robust Recommender Systems

计算机科学 稳健性(进化) 推荐系统 危害 违反直觉 发电机(电路理论) 对抗制 实证研究 计算机安全 机器学习 人工智能 量子力学 基因 认识论 物理 哲学 功率(物理) 化学 法学 生物化学 政治学
作者
Chenwang Wu,Defu Lian,Yong Ge,Zhihao Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11915-11931 被引量:19
标识
DOI:10.1109/tpami.2023.3274759
摘要

Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵雪莲完成签到,获得积分10
刚刚
ChenYX发布了新的文献求助10
刚刚
林洛沁发布了新的文献求助10
刚刚
Santasy完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
spc68应助47采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
7秒前
云望完成签到,获得积分10
7秒前
8秒前
诺诺朱发布了新的文献求助10
8秒前
超级老三发布了新的文献求助10
9秒前
meng发布了新的文献求助10
9秒前
10秒前
慕青应助林洛沁采纳,获得10
10秒前
11秒前
11秒前
YXZ发布了新的文献求助30
11秒前
小蘑菇应助1816013153采纳,获得10
12秒前
fancyiii发布了新的文献求助10
13秒前
酷雅的小跟班完成签到,获得积分20
14秒前
ChenChen发布了新的文献求助10
14秒前
fan发布了新的文献求助10
14秒前
皛白完成签到,获得积分20
14秒前
kdjm688发布了新的文献求助10
14秒前
大模型应助落寞的无施采纳,获得10
15秒前
汉堡包应助吴彦祖采纳,获得10
15秒前
华仔应助哆来米采纳,获得10
16秒前
16秒前
17秒前
科研通AI6应助米粒采纳,获得10
17秒前
研友_VZG7GZ应助皛白采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577756
求助须知:如何正确求助?哪些是违规求助? 4662789
关于积分的说明 14743583
捐赠科研通 4603478
什么是DOI,文献DOI怎么找? 2526478
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465573