亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Influence-Driven Data Poisoning for Robust Recommender Systems

计算机科学 稳健性(进化) 推荐系统 危害 违反直觉 发电机(电路理论) 对抗制 实证研究 计算机安全 机器学习 人工智能 生物化学 化学 基因 哲学 功率(物理) 物理 认识论 量子力学 政治学 法学
作者
Chenwang Wu,Defu Lian,Yong Ge,Zhihao Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 11915-11931 被引量:14
标识
DOI:10.1109/tpami.2023.3274759
摘要

Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
东篱发布了新的文献求助10
11秒前
馆长应助科研通管家采纳,获得10
15秒前
科研通AI6应助东篱采纳,获得10
18秒前
47秒前
53秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
1分钟前
烟花应助曾泰平采纳,获得10
1分钟前
1分钟前
2分钟前
起风了完成签到 ,获得积分10
2分钟前
曾泰平发布了新的文献求助10
2分钟前
Able完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
忧郁小鸽子完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
cadnash完成签到,获得积分10
3分钟前
4分钟前
善学以致用应助桃欣采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
4分钟前
iman完成签到,获得积分10
4分钟前
共享精神应助Dreamer.采纳,获得10
5分钟前
愉快的花卷完成签到,获得积分10
5分钟前
田様应助愉快的花卷采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Dreamer.发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595764
求助须知:如何正确求助?哪些是违规求助? 4008008
关于积分的说明 12408755
捐赠科研通 3686743
什么是DOI,文献DOI怎么找? 2032042
邀请新用户注册赠送积分活动 1065278
科研通“疑难数据库(出版商)”最低求助积分说明 950616