Influence-Driven Data Poisoning for Robust Recommender Systems

计算机科学 稳健性(进化) 推荐系统 危害 违反直觉 发电机(电路理论) 对抗制 实证研究 计算机安全 机器学习 人工智能 量子力学 基因 认识论 物理 哲学 功率(物理) 化学 法学 生物化学 政治学
作者
Chenwang Wu,Defu Lian,Yong Ge,Zhihao Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11915-11931 被引量:19
标识
DOI:10.1109/tpami.2023.3274759
摘要

Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当当完成签到,获得积分20
1秒前
冥灵花火完成签到,获得积分10
1秒前
北林发布了新的文献求助10
3秒前
J.完成签到 ,获得积分10
3秒前
Ava应助Ming采纳,获得10
5秒前
6秒前
CodeCraft应助现代的绣连采纳,获得10
7秒前
大模型应助CY采纳,获得10
8秒前
赘婿应助Meng采纳,获得10
8秒前
L.完成签到,获得积分10
8秒前
10秒前
董倍儿瘦发布了新的文献求助10
10秒前
子车茗应助fengshaohua采纳,获得20
11秒前
夜神月发布了新的文献求助10
11秒前
13秒前
爆米花应助LUNE采纳,获得30
13秒前
赘婿应助乔磊采纳,获得10
13秒前
在水一方应助biubiu采纳,获得20
13秒前
弗洛莉娅完成签到,获得积分10
13秒前
14秒前
15秒前
jjf完成签到,获得积分10
16秒前
俊秀的半雪完成签到,获得积分10
16秒前
ljy发布了新的文献求助10
16秒前
Lucas应助Onionplink采纳,获得10
17秒前
andy完成签到,获得积分10
19秒前
北林完成签到,获得积分10
19秒前
20秒前
CY发布了新的文献求助10
20秒前
jjf发布了新的文献求助10
20秒前
22秒前
当当发布了新的文献求助10
22秒前
zgn关闭了zgn文献求助
23秒前
Amber发布了新的文献求助10
24秒前
25秒前
犹豫忆灵完成签到,获得积分10
25秒前
汉堡包应助朴实的无极采纳,获得10
27秒前
27秒前
南北3199完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832