Influence-Driven Data Poisoning for Robust Recommender Systems

计算机科学 稳健性(进化) 推荐系统 危害 违反直觉 发电机(电路理论) 对抗制 实证研究 计算机安全 机器学习 人工智能 量子力学 基因 认识论 物理 哲学 功率(物理) 化学 法学 生物化学 政治学
作者
Chenwang Wu,Defu Lian,Yong Ge,Zhihao Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11915-11931 被引量:19
标识
DOI:10.1109/tpami.2023.3274759
摘要

Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝发布了新的文献求助30
刚刚
lvbowen发布了新的文献求助10
1秒前
1秒前
人123456完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
齐朕完成签到,获得积分10
2秒前
2秒前
科研通AI6应助小语丝采纳,获得10
2秒前
早早完成签到,获得积分20
3秒前
Twonej应助王木木采纳,获得30
3秒前
Jasper应助damang采纳,获得10
3秒前
3秒前
3秒前
Mortimer完成签到,获得积分10
3秒前
4秒前
freebird应助zp4采纳,获得10
4秒前
huiee发布了新的文献求助10
4秒前
4秒前
星奕完成签到 ,获得积分10
4秒前
5秒前
lvbowen完成签到,获得积分10
6秒前
GRJ发布了新的文献求助30
6秒前
搜集达人应助夕荀采纳,获得10
6秒前
gaochanglu发布了新的文献求助10
6秒前
6秒前
所所应助jassin采纳,获得10
6秒前
陈涛完成签到,获得积分10
6秒前
温婉的老五完成签到,获得积分20
7秒前
Wu关注了科研通微信公众号
7秒前
yangqi完成签到,获得积分10
7秒前
ww发布了新的文献求助10
8秒前
echo完成签到,获得积分10
8秒前
欢喜完成签到 ,获得积分10
9秒前
luo发布了新的文献求助10
9秒前
xxaqs发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Jinna706完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271