Influence-Driven Data Poisoning for Robust Recommender Systems

计算机科学 稳健性(进化) 推荐系统 危害 违反直觉 发电机(电路理论) 对抗制 实证研究 计算机安全 机器学习 人工智能 量子力学 基因 认识论 物理 哲学 功率(物理) 化学 法学 生物化学 政治学
作者
Chenwang Wu,Defu Lian,Yong Ge,Zhihao Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11915-11931 被引量:19
标识
DOI:10.1109/tpami.2023.3274759
摘要

Recent studies have shown that recommender systems are vulnerable, and it is easy for attackers to inject well-designed malicious profiles into the system, resulting in biased recommendations. We cannot deprive these data's injection right and deny their existence's rationality, making it imperative to study recommendation robustness. Despite impressive emerging work, threat assessment of the bi-level poisoning problem and the imperceptibility of poisoning users remain key challenges to be solved. To this end, we propose Infmix, an efficient poisoning attack strategy. Specifically, Infmix consists of an influence-based threat estimator and a user generator, Usermix. First, the influence-based estimator can efficiently evaluate the user's harm to the recommender system without retraining, which is challenging for existing attacks. Second, Usermix, a distribution-agnostic generator, can generate unnoticeable fake data even with a few known users. Under the guidance of the threat estimator, Infmix can select the users with large attacking impacts from the quasi-real candidates generated by Usermix. Extensive experiments demonstrate Infmix's superiority by attacking six recommendation systems with four real datasets. Additionally, we propose a novel defense strategy, adversarial poisoning training (APT). It mimics the poisoning process by injecting fake users (ERM users) committed to minimizing empirical risk to build a robust system. Similar to Infmix, we also utilize the influence function to solve the bi-level optimization challenge of generating ERM users. Although the idea of "fighting fire with fire" in APT seems counterintuitive, we prove its effectiveness in improving recommendation robustness through theoretical analysis and empirical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
3秒前
坚定的泥猴桃完成签到 ,获得积分10
4秒前
4秒前
同學你該吃藥了完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
7秒前
xvping完成签到,获得积分10
7秒前
8秒前
斯文败类应助闪闪落雁采纳,获得10
8秒前
8秒前
朴素炎彬完成签到,获得积分20
9秒前
汉堡包应助兀那狗子别跑采纳,获得10
9秒前
执着冷雁发布了新的文献求助10
10秒前
syp发布了新的文献求助10
11秒前
泡泡完成签到 ,获得积分10
11秒前
11秒前
orixero应助唐tang采纳,获得10
12秒前
含蓄的敏发布了新的文献求助10
12秒前
充电宝应助发文章12138采纳,获得10
12秒前
xiaoxiao发布了新的文献求助10
12秒前
包容煎饼发布了新的文献求助10
13秒前
卷王完成签到,获得积分10
13秒前
15秒前
荷包蛋发布了新的文献求助20
16秒前
HR112发布了新的文献求助10
17秒前
18秒前
dididi完成签到,获得积分10
18秒前
18秒前
18秒前
pluto应助超级的鞅采纳,获得10
19秒前
mingyahaoa完成签到 ,获得积分10
19秒前
深情安青应助syp采纳,获得10
19秒前
cc完成签到 ,获得积分10
19秒前
19秒前
柔弱嵩发布了新的文献求助10
20秒前
20秒前
jgtrd完成签到,获得积分20
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962