Kernel method for gravity forward simulation in implicit probabilistic geologic modeling

计算机科学 网格 离散化 算法 核(代数) 概率逻辑 反演(地质) 数学优化 地质学 数学 人工智能 大地测量学 构造盆地 组合数学 数学分析 古生物学
作者
Zhouji Liang,Miguel de la Varga,Florian Wellmann
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (3): G43-G55
标识
DOI:10.1190/geo2022-0308.1
摘要

Gravity is one of the most widely used geophysical data types in subsurface exploration. In the recent developments of stochastic geologic modeling, gravity data serve as an additional constraint to the model construction. The gravity data can be included in the modeling process as the likelihood function in a probabilistic joint inversion framework and allow the quantification of uncertainty in geologic modeling directly. A fast but also precise forward gravity simulation is essential to the success of the probabilistic inversion. Hence, we have developed a gravity kernel method, which is based on the widely adopted analytical solution on a discretized grid. As opposed to a globally refined regular mesh, we construct local tensor grids for individual gravity receivers, respecting the gravimeter locations and the local sensitivities. The kernel method is efficient in terms of computing and memory use for mesh-free implicit geologic modeling approaches. This design makes the method well suited for many-query applications, such as Bayesian machine learning using gradient information calculated from automatic differentiation. Optimal grid design without knowing the underlying geometry is not straightforward before evaluating the model. Therefore, we further provide a novel perspective on a refinement strategy for the kernel method based on the sensitivity of the cell to the corresponding receiver. Numerical results are presented and found superior performance compared to the conventional spatial convolution method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊大完成签到,获得积分10
刚刚
打打应助Leeu采纳,获得30
1秒前
Hannahcx发布了新的文献求助10
2秒前
2秒前
小蘑菇应助chang采纳,获得10
2秒前
wyf发布了新的文献求助10
2秒前
2秒前
Zer关闭了Zer文献求助
2秒前
wfwl完成签到,获得积分10
3秒前
调皮的秋柔完成签到,获得积分10
3秒前
3秒前
酷波er应助Solitude采纳,获得10
3秒前
小周周发布了新的文献求助10
4秒前
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
英俊的铭应助nzxnzx采纳,获得10
7秒前
misu完成签到,获得积分10
7秒前
Ava应助Emma采纳,获得10
8秒前
mm发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
tree发布了新的文献求助10
9秒前
QCC完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
机灵柚子发布了新的文献求助10
10秒前
没有昵称完成签到,获得积分10
11秒前
初商拾陆发布了新的文献求助10
12秒前
HTniconico完成签到 ,获得积分10
12秒前
充电宝应助田田采纳,获得10
12秒前
虚幻绿兰完成签到,获得积分10
13秒前
Hannahcx完成签到,获得积分20
13秒前
小周周完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650