Kernel method for gravity forward simulation in implicit probabilistic geologic modeling

计算机科学 网格 离散化 算法 核(代数) 概率逻辑 反演(地质) 数学优化 地质学 数学 人工智能 大地测量学 构造盆地 组合数学 数学分析 古生物学
作者
Zhouji Liang,Miguel de la Varga,Florian Wellmann
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (3): G43-G55
标识
DOI:10.1190/geo2022-0308.1
摘要

Gravity is one of the most widely used geophysical data types in subsurface exploration. In the recent developments of stochastic geologic modeling, gravity data serve as an additional constraint to the model construction. The gravity data can be included in the modeling process as the likelihood function in a probabilistic joint inversion framework and allow the quantification of uncertainty in geologic modeling directly. A fast but also precise forward gravity simulation is essential to the success of the probabilistic inversion. Hence, we have developed a gravity kernel method, which is based on the widely adopted analytical solution on a discretized grid. As opposed to a globally refined regular mesh, we construct local tensor grids for individual gravity receivers, respecting the gravimeter locations and the local sensitivities. The kernel method is efficient in terms of computing and memory use for mesh-free implicit geologic modeling approaches. This design makes the method well suited for many-query applications, such as Bayesian machine learning using gradient information calculated from automatic differentiation. Optimal grid design without knowing the underlying geometry is not straightforward before evaluating the model. Therefore, we further provide a novel perspective on a refinement strategy for the kernel method based on the sensitivity of the cell to the corresponding receiver. Numerical results are presented and found superior performance compared to the conventional spatial convolution method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小南发布了新的文献求助10
1秒前
1秒前
1秒前
粒粒糖完成签到,获得积分10
1秒前
我是老大应助小易采纳,获得10
1秒前
2秒前
2秒前
lzz发布了新的文献求助10
2秒前
zz完成签到,获得积分20
3秒前
Cisplatin完成签到,获得积分20
3秒前
4秒前
lan发布了新的文献求助10
4秒前
十月_i发布了新的文献求助40
4秒前
4秒前
li发布了新的文献求助10
4秒前
4秒前
不吃香菜完成签到,获得积分10
5秒前
5秒前
阔达犀牛发布了新的文献求助10
5秒前
灵巧尔云完成签到,获得积分10
5秒前
慕青应助孙玉采纳,获得10
5秒前
无花果应助现实的井采纳,获得30
7秒前
不许内耗发布了新的文献求助10
7秒前
8秒前
不吃香菜发布了新的文献求助10
8秒前
Hello应助niko采纳,获得10
9秒前
星辰大海应助vvvg采纳,获得30
10秒前
daniel关注了科研通微信公众号
10秒前
科研通AI2S应助niko采纳,获得10
10秒前
英姑应助niko采纳,获得10
10秒前
香蕉觅云应助niko采纳,获得30
10秒前
10秒前
Hello应助离线采纳,获得10
10秒前
小白完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514286
求助须知:如何正确求助?哪些是违规求助? 4608193
关于积分的说明 14508898
捐赠科研通 4544028
什么是DOI,文献DOI怎么找? 2489864
邀请新用户注册赠送积分活动 1471799
关于科研通互助平台的介绍 1443710