已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Kernel method for gravity forward simulation in implicit probabilistic geologic modeling

计算机科学 网格 离散化 算法 核(代数) 概率逻辑 反演(地质) 数学优化 地质学 数学 人工智能 大地测量学 构造盆地 组合数学 数学分析 古生物学
作者
Zhouji Liang,Miguel de la Varga,Florian Wellmann
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (3): G43-G55
标识
DOI:10.1190/geo2022-0308.1
摘要

Gravity is one of the most widely used geophysical data types in subsurface exploration. In the recent developments of stochastic geologic modeling, gravity data serve as an additional constraint to the model construction. The gravity data can be included in the modeling process as the likelihood function in a probabilistic joint inversion framework and allow the quantification of uncertainty in geologic modeling directly. A fast but also precise forward gravity simulation is essential to the success of the probabilistic inversion. Hence, we have developed a gravity kernel method, which is based on the widely adopted analytical solution on a discretized grid. As opposed to a globally refined regular mesh, we construct local tensor grids for individual gravity receivers, respecting the gravimeter locations and the local sensitivities. The kernel method is efficient in terms of computing and memory use for mesh-free implicit geologic modeling approaches. This design makes the method well suited for many-query applications, such as Bayesian machine learning using gradient information calculated from automatic differentiation. Optimal grid design without knowing the underlying geometry is not straightforward before evaluating the model. Therefore, we further provide a novel perspective on a refinement strategy for the kernel method based on the sensitivity of the cell to the corresponding receiver. Numerical results are presented and found superior performance compared to the conventional spatial convolution method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guanzi发布了新的文献求助10
刚刚
leave完成签到 ,获得积分10
1秒前
东方天奇完成签到,获得积分10
1秒前
3秒前
汉堡包应助SPUwangshunfeng采纳,获得10
4秒前
tanhaowen完成签到 ,获得积分10
4秒前
脱壳金蝉完成签到,获得积分10
4秒前
清森完成签到 ,获得积分10
4秒前
东方天奇发布了新的文献求助10
5秒前
5秒前
甜蜜鞅发布了新的文献求助30
8秒前
9秒前
9秒前
bji完成签到,获得积分10
11秒前
丘比特应助guanzi采纳,获得10
11秒前
tangzhidi发布了新的文献求助20
11秒前
14秒前
今后应助岳小龙采纳,获得10
16秒前
SPUwangshunfeng完成签到,获得积分10
19秒前
MYZ完成签到,获得积分10
20秒前
77完成签到 ,获得积分10
21秒前
drlq2022完成签到,获得积分10
25秒前
晚意完成签到 ,获得积分10
25秒前
27秒前
皮皮完成签到 ,获得积分20
28秒前
HHH发布了新的文献求助10
28秒前
30秒前
archer01发布了新的文献求助10
31秒前
香蕉觅云应助chen采纳,获得10
31秒前
害怕的山兰关注了科研通微信公众号
31秒前
紫苑发布了新的文献求助20
31秒前
研友_VZG7GZ应助巾凡采纳,获得10
32秒前
32秒前
34秒前
Crane发布了新的文献求助30
35秒前
39秒前
39秒前
屠夫9441完成签到 ,获得积分10
42秒前
43秒前
陆艳梅2023发布了新的文献求助10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307213
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499788
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382