亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoye完成签到 ,获得积分10
17秒前
画晴完成签到,获得积分10
21秒前
22秒前
画晴发布了新的文献求助30
28秒前
深情安青应助谢琳采纳,获得10
36秒前
在水一方应助sherrydj采纳,获得10
36秒前
1分钟前
wyx发布了新的文献求助10
1分钟前
1分钟前
英姑应助整齐千柳采纳,获得10
1分钟前
1分钟前
整齐千柳发布了新的文献求助10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
jjqqqj完成签到 ,获得积分10
1分钟前
najd完成签到 ,获得积分10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
CodeCraft应助Kiri_0661采纳,获得10
2分钟前
明亮的代灵完成签到 ,获得积分10
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
一个小胖子完成签到,获得积分10
3分钟前
Mingyue123发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
LPPQBB应助科研通管家采纳,获得30
3分钟前
3分钟前
家欣完成签到 ,获得积分10
3分钟前
无花果应助清爽伯云采纳,获得30
4分钟前
科研通AI6应助ceeray23采纳,获得20
4分钟前
5分钟前
清爽伯云发布了新的文献求助30
5分钟前
清爽伯云完成签到,获得积分10
5分钟前
shaonianzu完成签到 ,获得积分10
5分钟前
寂寞的尔丝完成签到 ,获得积分10
5分钟前
ccc完成签到 ,获得积分10
5分钟前
coolplex完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356965
求助须知:如何正确求助?哪些是违规求助? 4488587
关于积分的说明 13972349
捐赠科研通 4389621
什么是DOI,文献DOI怎么找? 2411667
邀请新用户注册赠送积分活动 1404221
关于科研通互助平台的介绍 1378341