Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
1秒前
CCsci完成签到 ,获得积分10
3秒前
震动的鹏飞完成签到 ,获得积分10
7秒前
Accept2024完成签到,获得积分10
8秒前
缓慢的甜瓜完成签到,获得积分10
12秒前
牟若溪完成签到,获得积分10
14秒前
guoxingliu完成签到,获得积分10
17秒前
大脸猫完成签到 ,获得积分10
20秒前
研友_8Y26PL完成签到 ,获得积分10
21秒前
不秃燃的小老弟完成签到 ,获得积分10
22秒前
mispring完成签到,获得积分10
26秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
LPPQBB应助科研通管家采纳,获得30
28秒前
彭于彦祖应助科研通管家采纳,获得150
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
28秒前
小五完成签到 ,获得积分10
36秒前
Ttimer完成签到,获得积分10
37秒前
朱科源啊源完成签到 ,获得积分10
40秒前
zn完成签到 ,获得积分10
44秒前
ho发布了新的文献求助30
52秒前
white完成签到 ,获得积分10
58秒前
刘师兄吧完成签到,获得积分10
59秒前
Adam完成签到 ,获得积分10
1分钟前
zwj003完成签到,获得积分0
1分钟前
克姑美完成签到 ,获得积分10
1分钟前
事上炼完成签到,获得积分10
1分钟前
听寒完成签到,获得积分10
1分钟前
可靠诗筠完成签到 ,获得积分10
1分钟前
天天开心完成签到 ,获得积分10
1分钟前
wlscj给研友_Zleb68的求助进行了留言
1分钟前
Hanqi完成签到 ,获得积分10
1分钟前
nicky完成签到 ,获得积分10
1分钟前
mispring发布了新的文献求助10
1分钟前
搞怪元彤完成签到,获得积分10
1分钟前
莫x莫完成签到 ,获得积分10
1分钟前
长情以蓝完成签到 ,获得积分10
1分钟前
cd完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293860
求助须知:如何正确求助?哪些是违规求助? 4443921
关于积分的说明 13831743
捐赠科研通 4327836
什么是DOI,文献DOI怎么找? 2375755
邀请新用户注册赠送积分活动 1371023
关于科研通互助平台的介绍 1336043