Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Elsevier BV]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于浩完成签到 ,获得积分10
3秒前
小杨完成签到 ,获得积分10
5秒前
5秒前
7秒前
完美世界应助涛子11111采纳,获得10
8秒前
JamesPei应助天涯小文刀采纳,获得10
9秒前
9秒前
赵坤煊完成签到 ,获得积分10
10秒前
KJ完成签到,获得积分10
10秒前
duotianzhiyi完成签到,获得积分10
10秒前
11秒前
小马甲应助uu采纳,获得10
11秒前
余成风发布了新的文献求助10
13秒前
研友_VZG7GZ应助直率一刀采纳,获得10
14秒前
优雅海瑶完成签到,获得积分10
17秒前
17秒前
coco发布了新的文献求助10
17秒前
科目三应助皮崇知采纳,获得10
20秒前
王南晰完成签到 ,获得积分10
20秒前
余成风完成签到,获得积分20
21秒前
CipherSage应助Vaeling采纳,获得10
21秒前
彭于晏应助合适磬采纳,获得10
22秒前
NJY发布了新的文献求助10
23秒前
Owen应助苏卿采纳,获得10
23秒前
乐乐应助刻苦的晓槐采纳,获得10
24秒前
大头发布了新的文献求助10
25秒前
可爱的函函应助现代一兰采纳,获得100
25秒前
皮崇知完成签到,获得积分10
25秒前
Ava应助文艺谷蓝采纳,获得10
25秒前
蓝愿完成签到,获得积分10
25秒前
26秒前
27秒前
coco完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
flysky120完成签到,获得积分10
32秒前
皮崇知发布了新的文献求助10
32秒前
蓝愿发布了新的文献求助10
33秒前
uu发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999295
求助须知:如何正确求助?哪些是违规求助? 3538645
关于积分的说明 11274805
捐赠科研通 3277547
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810090