Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助蓓蓓0303采纳,获得10
刚刚
大河细流完成签到,获得积分10
2秒前
FashionBoy应助1234567xjy采纳,获得10
2秒前
2秒前
3秒前
甜甜电源发布了新的文献求助10
3秒前
小C完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
热情铭完成签到 ,获得积分10
4秒前
4秒前
1111应助dopamine采纳,获得10
4秒前
天天发布了新的文献求助10
5秒前
戴帽子的花盆完成签到,获得积分10
5秒前
why完成签到 ,获得积分10
5秒前
han完成签到,获得积分10
5秒前
梁云发布了新的文献求助10
6秒前
小二郎应助甜菜采纳,获得10
7秒前
Akim应助腼腆的小女孩采纳,获得10
7秒前
Orange应助戴昕东采纳,获得10
7秒前
7秒前
8秒前
研友_VZG7GZ应助沐兮采纳,获得10
8秒前
量子星尘发布了新的文献求助10
10秒前
xiaohu完成签到,获得积分10
10秒前
11秒前
12秒前
liuliu发布了新的文献求助10
12秒前
yyy1234567完成签到 ,获得积分10
13秒前
cc发布了新的文献求助10
14秒前
dopamine完成签到,获得积分10
15秒前
Phe发布了新的文献求助10
15秒前
16秒前
英吉利25发布了新的文献求助10
17秒前
17秒前
善良依瑶发布了新的文献求助50
18秒前
19秒前
蓓蓓0303发布了新的文献求助10
20秒前
21秒前
21秒前
天天发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616