已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小肥发布了新的文献求助10
刚刚
33完成签到,获得积分10
1秒前
阿峤完成签到,获得积分10
2秒前
iman完成签到,获得积分10
3秒前
小文cremen完成签到 ,获得积分10
3秒前
晁子枫完成签到 ,获得积分10
3秒前
小肥完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
m李完成签到 ,获得积分10
10秒前
newplayer完成签到,获得积分10
11秒前
qianqina发布了新的文献求助10
11秒前
xuyidan发布了新的文献求助10
12秒前
小凯完成签到 ,获得积分10
12秒前
温暖jiammm发布了新的文献求助10
12秒前
Ankher完成签到,获得积分10
13秒前
深情安青应助hx采纳,获得10
14秒前
舒心以蓝完成签到,获得积分10
14秒前
灵巧大地完成签到,获得积分10
17秒前
孤独如曼完成签到 ,获得积分10
18秒前
GingerF应助橙橙采纳,获得200
19秒前
小凯完成签到 ,获得积分0
19秒前
20秒前
20秒前
ATEVYG完成签到 ,获得积分10
21秒前
xuyidan完成签到,获得积分20
24秒前
baihehuakai完成签到 ,获得积分10
24秒前
Jasper应助qianqina采纳,获得10
25秒前
siri1313发布了新的文献求助10
26秒前
xixiYa_完成签到,获得积分10
26秒前
冷艳铁身完成签到 ,获得积分10
28秒前
搜集达人应助明夕何夕采纳,获得10
29秒前
简柠完成签到,获得积分10
30秒前
32秒前
chenwuhao完成签到 ,获得积分10
32秒前
妖九笙完成签到 ,获得积分10
34秒前
37秒前
羊村霸总懒大王完成签到 ,获得积分10
38秒前
华仔应助meeteryu采纳,获得20
38秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386