Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助绛橘色的日落采纳,获得10
刚刚
小可完成签到 ,获得积分10
刚刚
pj完成签到,获得积分10
1秒前
hx完成签到 ,获得积分10
1秒前
CodeCraft应助猪猪hero采纳,获得10
2秒前
于瑜与余发布了新的文献求助10
2秒前
小狗不悲伤关注了科研通微信公众号
2秒前
2秒前
少生气完成签到,获得积分10
3秒前
Shellingford完成签到,获得积分10
3秒前
852应助huaming采纳,获得10
3秒前
4秒前
wwww发布了新的文献求助10
4秒前
4秒前
晓晓完成签到,获得积分10
4秒前
cjlinhunu发布了新的文献求助10
4秒前
赘婿应助SUMING采纳,获得10
4秒前
春风十里完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
科研通AI6应助勤恳的德地采纳,获得10
6秒前
Gasen完成签到,获得积分10
7秒前
7秒前
GAN完成签到,获得积分10
7秒前
Jingshuiliushen完成签到,获得积分10
7秒前
7秒前
浮游应助bless采纳,获得10
7秒前
arerose给arerose的求助进行了留言
8秒前
8秒前
Shell完成签到,获得积分10
8秒前
ctt完成签到,获得积分10
8秒前
思源应助lxm采纳,获得10
9秒前
wanci应助于瑜与余采纳,获得10
9秒前
9秒前
我是老大应助花雨黎伞采纳,获得10
9秒前
lily发布了新的文献求助10
9秒前
9秒前
科研通AI6应助善良的梦槐采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327618
求助须知:如何正确求助?哪些是违规求助? 4467657
关于积分的说明 13901970
捐赠科研通 4360378
什么是DOI,文献DOI怎么找? 2395067
邀请新用户注册赠送积分活动 1388628
关于科研通互助平台的介绍 1359384