Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研女仆完成签到 ,获得积分10
1秒前
xdc发布了新的文献求助10
1秒前
不想起昵称完成签到,获得积分10
3秒前
leeOOO完成签到,获得积分10
3秒前
wbb完成签到 ,获得积分10
4秒前
完美的鹤完成签到,获得积分10
4秒前
外星人发布了新的文献求助10
4秒前
热可可728完成签到,获得积分10
5秒前
暴躁的海豚完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
smottom完成签到,获得积分0
5秒前
爱喝水的乌鸦完成签到 ,获得积分10
7秒前
jasmine完成签到 ,获得积分10
7秒前
大力的诗蕾完成签到 ,获得积分10
8秒前
万丈光芒完成签到 ,获得积分10
9秒前
岚12完成签到 ,获得积分10
9秒前
xz完成签到 ,获得积分10
10秒前
hhhhhha完成签到,获得积分10
11秒前
微光熠完成签到,获得积分10
11秒前
bener完成签到,获得积分10
11秒前
敏感的熊猫完成签到 ,获得积分10
13秒前
蓝荆完成签到,获得积分10
15秒前
ycc发布了新的文献求助10
15秒前
豆子完成签到,获得积分10
17秒前
求助完成签到,获得积分10
17秒前
悦耳的锦程完成签到 ,获得积分10
17秒前
默默完成签到 ,获得积分10
18秒前
开心发布了新的文献求助10
18秒前
bkagyin应助科研通管家采纳,获得10
19秒前
ZHDNCG完成签到,获得积分10
20秒前
友好元槐完成签到,获得积分10
20秒前
mm完成签到,获得积分10
22秒前
Joanna完成签到,获得积分10
23秒前
暖羊羊Y完成签到 ,获得积分10
23秒前
Jeremy完成签到 ,获得积分10
24秒前
李健应助罗大壮采纳,获得10
25秒前
realityjunky完成签到,获得积分10
25秒前
拾柒完成签到 ,获得积分10
26秒前
26秒前
離殇完成签到,获得积分10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880