Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Elsevier BV]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕新完成签到,获得积分10
1秒前
1秒前
馆长举报研友_8KAzAn求助涉嫌违规
1秒前
幽默发卡完成签到,获得积分10
1秒前
zhangyulong完成签到,获得积分10
2秒前
Lucas应助JiaoJiao采纳,获得10
3秒前
sjj完成签到,获得积分10
4秒前
4秒前
bensonyang1013完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
沉默是金发布了新的文献求助10
7秒前
8秒前
Owen应助uromaster采纳,获得10
9秒前
凶狠的书白完成签到,获得积分10
10秒前
Ava应助云起龙都采纳,获得10
11秒前
12秒前
香蕉觅云应助Throb采纳,获得10
14秒前
linhappy完成签到,获得积分20
14秒前
帅气溪流完成签到,获得积分20
15秒前
唐泽雪穗发布了新的文献求助30
18秒前
蓝天应助李拾舟采纳,获得10
18秒前
19秒前
linhappy发布了新的文献求助10
19秒前
Night完成签到,获得积分10
20秒前
不想干活应助bnvgx采纳,获得10
20秒前
潇涯完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
ddddyyyyy完成签到,获得积分20
26秒前
26秒前
26秒前
27秒前
27秒前
yy完成签到,获得积分10
29秒前
lele发布了新的文献求助10
29秒前
uromaster发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4537931
求助须知:如何正确求助?哪些是违规求助? 3972654
关于积分的说明 12306475
捐赠科研通 3639434
什么是DOI,文献DOI怎么找? 2003881
邀请新用户注册赠送积分活动 1039207
科研通“疑难数据库(出版商)”最低求助积分说明 928594