亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cfyoung发布了新的文献求助10
14秒前
mo完成签到 ,获得积分10
18秒前
赵博宇发布了新的文献求助10
28秒前
木有完成签到 ,获得积分10
36秒前
ln完成签到 ,获得积分10
1分钟前
虚拟的盈完成签到 ,获得积分10
1分钟前
香蕉觅云应助顺心蜜粉采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
冰雪完成签到 ,获得积分10
1分钟前
赘婿应助顺心蜜粉采纳,获得10
1分钟前
cwy完成签到,获得积分10
1分钟前
1分钟前
Ayang完成签到,获得积分10
1分钟前
Ayang发布了新的文献求助10
1分钟前
牛牛完成签到 ,获得积分10
2分钟前
伶俐的金连完成签到 ,获得积分10
2分钟前
冷静新烟完成签到,获得积分10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
dly完成签到 ,获得积分10
2分钟前
2分钟前
碧蓝皮卡丘完成签到,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
kdjc完成签到 ,获得积分10
2分钟前
luchen完成签到,获得积分10
2分钟前
云上人完成签到 ,获得积分10
2分钟前
自觉语琴完成签到 ,获得积分10
3分钟前
WXY完成签到,获得积分10
3分钟前
纯情的冷风完成签到,获得积分20
3分钟前
anders完成签到 ,获得积分10
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
SciGPT应助纯情的冷风采纳,获得10
3分钟前
st完成签到 ,获得积分10
3分钟前
柠檬不萌完成签到,获得积分10
3分钟前
3分钟前
3分钟前
风一样的我完成签到 ,获得积分0
3分钟前
柔弱熊猫完成签到 ,获得积分10
3分钟前
YJY完成签到 ,获得积分10
4分钟前
Blossom完成签到,获得积分10
4分钟前
Chris完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564877
求助须知:如何正确求助?哪些是违规求助? 4649556
关于积分的说明 14689129
捐赠科研通 4591552
什么是DOI,文献DOI怎么找? 2519203
邀请新用户注册赠送积分活动 1491885
关于科研通互助平台的介绍 1462889