Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助ysws采纳,获得10
刚刚
小米发布了新的文献求助10
刚刚
Crush完成签到,获得积分10
刚刚
科研通AI2S应助Butterfly采纳,获得10
1秒前
zym903发布了新的文献求助10
1秒前
烟花应助许飞采纳,获得10
1秒前
polarisier发布了新的文献求助10
1秒前
顾矜应助楠楠采纳,获得10
1秒前
xmj完成签到,获得积分20
2秒前
橘子完成签到,获得积分10
2秒前
3秒前
1112完成签到,获得积分10
3秒前
3秒前
辞稚发布了新的文献求助10
3秒前
Lumosv完成签到,获得积分10
3秒前
bkagyin应助慈祥的惜霜采纳,获得10
5秒前
陶醉清完成签到,获得积分10
5秒前
Xenia完成签到,获得积分10
5秒前
6秒前
1112发布了新的文献求助10
7秒前
深情安青应助远方的大树采纳,获得10
7秒前
8秒前
咕噜发布了新的文献求助10
8秒前
9秒前
小马甲应助一块木头采纳,获得10
10秒前
小二郎应助白鸿瑞采纳,获得10
10秒前
LT关闭了LT文献求助
10秒前
屹舟完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
yiyi完成签到,获得积分10
11秒前
万能图书馆应助Linsey采纳,获得10
12秒前
义气的水蓝应助逆光采纳,获得50
12秒前
Butterfly完成签到,获得积分10
12秒前
12秒前
13秒前
倪好发布了新的文献求助10
14秒前
满意曼荷应助majf采纳,获得10
14秒前
15秒前
无极微光应助SICHEN采纳,获得20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490477
求助须知:如何正确求助?哪些是违规求助? 4589000
关于积分的说明 14422947
捐赠科研通 4521048
什么是DOI,文献DOI怎么找? 2477109
邀请新用户注册赠送积分活动 1462474
关于科研通互助平台的介绍 1435306