Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助貔貅采纳,获得10
刚刚
充电宝应助愉快秀采纳,获得10
刚刚
共享精神应助飘雪采纳,获得10
刚刚
刚刚
1秒前
1秒前
端庄向雁完成签到,获得积分10
1秒前
JamesPei应助等等等等采纳,获得10
1秒前
刘子迪完成签到 ,获得积分10
1秒前
orixero应助姜姜姜采纳,获得10
1秒前
2秒前
桐桐应助豆豆小baby采纳,获得10
2秒前
lcdt完成签到,获得积分10
2秒前
所所应助苹果采纳,获得10
2秒前
风中忆枫发布了新的文献求助10
2秒前
西瓜鹿发布了新的文献求助10
2秒前
英俊的铭应助Slence采纳,获得10
3秒前
Salut发布了新的文献求助10
3秒前
3秒前
Ashely完成签到,获得积分20
3秒前
iNk应助良晤采纳,获得20
4秒前
畅快代柔完成签到,获得积分10
4秒前
大模型应助十一玮采纳,获得10
5秒前
5秒前
领导范儿应助ddsvdv采纳,获得10
5秒前
666完成签到 ,获得积分10
5秒前
Nancy完成签到,获得积分20
5秒前
5秒前
小龙发布了新的文献求助10
5秒前
小花发布了新的文献求助10
5秒前
Orange应助LR采纳,获得10
5秒前
fanfan完成签到,获得积分10
6秒前
愉快的苑博完成签到,获得积分10
6秒前
畅快代柔发布了新的文献求助10
7秒前
西瓜鹿完成签到,获得积分10
8秒前
8秒前
安静的幻竹完成签到,获得积分10
8秒前
9秒前
科研通AI6应助乐观的海采纳,获得10
9秒前
酷波er应助nano采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885