亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权翼完成签到,获得积分10
4秒前
Su关闭了Su文献求助
33秒前
38秒前
Criminology34发布了新的文献求助100
40秒前
浮游应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
43秒前
小蘑菇应助TXZ06采纳,获得10
52秒前
52秒前
59秒前
快乐听南完成签到,获得积分10
1分钟前
科研通AI2S应助舒适焦采纳,获得10
1分钟前
1分钟前
TXZ06发布了新的文献求助10
1分钟前
LukeLion发布了新的文献求助10
1分钟前
爆米花应助gtgyh采纳,获得10
1分钟前
思源应助LukeLion采纳,获得10
1分钟前
1分钟前
爱你没差完成签到 ,获得积分10
1分钟前
1分钟前
Frank应助舒适焦采纳,获得10
1分钟前
LukeLion发布了新的文献求助10
1分钟前
gtgyh发布了新的文献求助10
1分钟前
呜呼完成签到,获得积分10
1分钟前
monned完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助herococa采纳,获得30
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
称心的火车完成签到 ,获得积分10
2分钟前
gzslwddhjx发布了新的文献求助10
2分钟前
gzslwddhjx完成签到,获得积分10
3分钟前
CipherSage应助dong采纳,获得10
3分钟前
由道罡完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522725
求助须知:如何正确求助?哪些是违规求助? 4613660
关于积分的说明 14539149
捐赠科研通 4551386
什么是DOI,文献DOI怎么找? 2494224
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542