Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Elsevier BV]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳镜子完成签到,获得积分10
刚刚
开心的若烟完成签到,获得积分10
1秒前
爱上多hi完成签到,获得积分10
1秒前
ll发布了新的文献求助10
4秒前
4秒前
笨笨梦寒关注了科研通微信公众号
4秒前
MM完成签到,获得积分10
5秒前
煲煲煲仔饭完成签到 ,获得积分10
5秒前
煲煲煲仔饭完成签到 ,获得积分10
5秒前
火羊宝完成签到 ,获得积分10
5秒前
455完成签到,获得积分10
7秒前
cis2014完成签到,获得积分10
7秒前
嘻嘻完成签到,获得积分10
8秒前
athena完成签到,获得积分10
8秒前
十七完成签到 ,获得积分10
9秒前
Zz完成签到,获得积分10
9秒前
清淮完成签到 ,获得积分10
9秒前
小新小新发布了新的文献求助10
10秒前
amault完成签到,获得积分10
11秒前
马小燕完成签到,获得积分10
11秒前
潇洒一曲完成签到,获得积分10
12秒前
笛九完成签到 ,获得积分10
13秒前
机智咖啡豆完成签到 ,获得积分10
15秒前
桐桐应助害羞的天真采纳,获得10
15秒前
浮游应助哭泣的皮皮虾采纳,获得10
15秒前
英姑应助风清扬采纳,获得10
16秒前
hhhhxxxx完成签到,获得积分10
17秒前
jjj完成签到,获得积分10
17秒前
18秒前
Akim应助向上采纳,获得10
19秒前
辛勤香岚完成签到,获得积分10
20秒前
yoyo完成签到,获得积分10
21秒前
boxi完成签到,获得积分10
22秒前
chaos完成签到 ,获得积分10
22秒前
霍巧凡发布了新的文献求助10
23秒前
25秒前
田瑜完成签到,获得积分10
25秒前
ll发布了新的文献求助10
26秒前
受伤的安雁完成签到,获得积分10
26秒前
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695