Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助XQB采纳,获得30
1秒前
牛马学生完成签到,获得积分10
1秒前
YoungLee发布了新的文献求助10
1秒前
qwfwe发布了新的文献求助10
1秒前
3秒前
百里烬言发布了新的文献求助20
3秒前
华仔应助JING采纳,获得10
3秒前
3秒前
Rsoup完成签到,获得积分10
4秒前
4秒前
4秒前
江中发布了新的文献求助10
4秒前
今后应助水123采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
迂腐书生发布了新的文献求助10
7秒前
qwfwe完成签到,获得积分10
7秒前
Judy完成签到 ,获得积分10
7秒前
Nienie发布了新的文献求助10
8秒前
赘婿应助自信青筠采纳,获得10
8秒前
9秒前
potatoo1984完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
11秒前
zhanghandi完成签到,获得积分10
11秒前
11秒前
11秒前
林知鲸落完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
善学以致用应助邓新成采纳,获得10
14秒前
14秒前
14秒前
14秒前
crack完成签到,获得积分20
15秒前
XQB发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601255
求助须知:如何正确求助?哪些是违规求助? 4686741
关于积分的说明 14845862
捐赠科研通 4680218
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506140
关于科研通互助平台的介绍 1471283