Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slugger发布了新的文献求助10
刚刚
领导范儿应助酸奶泡泡采纳,获得10
刚刚
梁不二发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
汉堡包应助yuanyuan采纳,获得10
1秒前
Yang_Yuting完成签到 ,获得积分10
2秒前
月出西山上完成签到 ,获得积分10
3秒前
欣欣然发布了新的文献求助10
3秒前
4秒前
CodeCraft应助欣喜沛柔采纳,获得10
4秒前
Yx发布了新的文献求助10
4秒前
晚辰完成签到,获得积分10
5秒前
Blessing发布了新的文献求助10
5秒前
5秒前
爱听歌的安珊完成签到,获得积分10
5秒前
daodao发布了新的文献求助10
6秒前
赘婿应助slugger采纳,获得10
6秒前
adheret完成签到,获得积分10
7秒前
笨笨猪发布了新的文献求助10
7秒前
单薄的誉发布了新的文献求助10
7秒前
Lucky完成签到,获得积分10
8秒前
8秒前
李健应助淡淡猎豹采纳,获得10
8秒前
9秒前
yuanyuan完成签到,获得积分20
10秒前
隐形曼青应助Lemon采纳,获得10
11秒前
12秒前
梁不二完成签到,获得积分10
12秒前
13秒前
罗嘉尔发布了新的文献求助10
13秒前
13秒前
15884134873完成签到,获得积分10
14秒前
慕青应助古兰桑克斯的闪采纳,获得10
15秒前
叶微微发布了新的文献求助10
15秒前
15秒前
15秒前
哈哈哈完成签到,获得积分20
16秒前
Yang_Yuting发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272