Machine learning–based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries

医学 肝移植 接收机工作特性 移植 机器学习 人口学 内科学 计算机科学 社会学
作者
Tommy Ivanics,Delvin So,Marco P. A. W. Claasen,David Wallace,Madhukar S. Patel,Annabel Gravely,Woo Jin Choi,Chaya Shwaartz,Kate Walker,Lauren Erdman,Gonzalo Sapisochín
出处
期刊:American Journal of Transplantation [Wiley]
卷期号:23 (1): 64-71 被引量:8
标识
DOI:10.1016/j.ajt.2022.12.002
摘要

Many countries curate national registries of liver transplant (LT) data. These registries are often used to generate predictive models; however, potential performance and transferability of these models remain unclear. We used data from 3 national registries and developed machine learning algorithm (MLA)-based models to predict 90-day post-LT mortality within and across countries. Predictive performance and external validity of each model were assessed. Prospectively collected data of adult patients (aged ≥18 years) who underwent primary LTs between January 2008 and December 2018 from the Canadian Organ Replacement Registry (Canada), National Health Service Blood and Transplantation (United Kingdom), and United Network for Organ Sharing (United States) were used to develop MLA models to predict 90-day post-LT mortality. Models were developed using each registry individually (based on variables inherent to the individual databases) and using all 3 registries combined (variables in common between the registries [harmonized]). The model performance was evaluated using area under the receiver operating characteristic (AUROC) curve. The number of patients included was as follows: Canada, n = 1214; the United Kingdom, n = 5287; and the United States, n = 59,558. The best performing MLA-based model was ridge regression across both individual registries and harmonized data sets. Model performance diminished from individualized to the harmonized registries, especially in Canada (individualized ridge: AUROC, 0.74; range, 0.73-0.74; harmonized: AUROC, 0.68; range, 0.50-0.73) and US (individualized ridge: AUROC, 0.71; range, 0.70-0.71; harmonized: AUROC, 0.66; range, 0.66-0.66) data sets. External model performance across countries was poor overall. MLA-based models yield a fair discriminatory potential when used within individual databases. However, the external validity of these models is poor when applied across countries. Standardization of registry-based variables could facilitate the added value of MLA-based models in informing decision making in future LTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净的127完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2339822272发布了新的文献求助10
2秒前
星星完成签到,获得积分10
2秒前
幸运兔发布了新的文献求助10
3秒前
上官若男应助wqx采纳,获得10
3秒前
月亮邮递员完成签到,获得积分10
5秒前
222完成签到 ,获得积分10
5秒前
Likj完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
异氰酸正丙酯完成签到 ,获得积分10
7秒前
wsc发布了新的文献求助10
7秒前
幸运兔完成签到,获得积分10
8秒前
曾祥钰完成签到 ,获得积分10
9秒前
10秒前
10秒前
bkagyin应助XM采纳,获得10
10秒前
10秒前
芒果糯米球完成签到,获得积分10
12秒前
未来完成签到,获得积分10
14秒前
14秒前
nuonuo发布了新的文献求助10
14秒前
14秒前
橙子发布了新的文献求助30
14秒前
海洋发布了新的文献求助10
15秒前
万能图书馆应助黄123huang_采纳,获得10
15秒前
丘比特应助tengfei采纳,获得10
16秒前
Cody发布了新的文献求助10
16秒前
lamer完成签到 ,获得积分10
16秒前
19秒前
20秒前
糖糖完成签到,获得积分20
21秒前
哇塞啊发布了新的文献求助10
21秒前
要减肥的歌曲完成签到,获得积分20
21秒前
21秒前
Watson完成签到,获得积分10
21秒前
Agu完成签到,获得积分10
22秒前
orixero应助balabala采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333